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Abstract 

This report presents a summary of the research supported by the AFOSR during the period 
February 1 2005 to May 31 2008 on the formulation and analysis of integration algorithms for the 
nonlinear dynamics of solids and structures. The project's main focus has been the development of 
energy-dissipative momentum-conserving time-stepping algorithms (or, in short, EDMC schemes) 
for finite strain plasticity and nonlinear coupled thermoelasticity. These schemes lead to numerical 
solutions that exhibit exactly, by design, the conservation laws of linear and angular momenta, as 
well as the exact physical dissipation characteristic of these inelastic systems. This latter property 
leads to a much improved numerical stability when compared with classical schemes, avoiding in 
particular their observed numerical instabilities in the nonlinear range. The design of the new 
algorithms is based on a complete mathematical analysis of the discrete dynamical system, with 
the above conservation/dissipation properties incorporated and proven rigorously and for general 
models and conditions (e.g. independent of the time step). In addition, the observation of the 
crucial role also played by the spatial discretization has led to the development of new locking-free 
assumed strain finite element methods for the implementation of energy-momentum schemes. 

KEYWORDS: nonlinear dynamics, energy-dissipative momentum-conserving 
algorithms, finite strain plasticity, nonlinear coupled ther- 
moelasticity, assumed strain finite element methods. 
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1. Objectives 

The research considered in this grant addressed different aspects of the numerical analysis 
of the dynamics of nonlinear solids and structures. The main goal was the development 
of stable time-stepping algorithms for nonlinear dynamics. The focus was on inelastic 
solids, including finite strain elastoplastic and coupled nonlinear thermomelastic models 
of three-dimensional solids and of structures (like shells). In addition, the project has 
considered the first steps in the extension of these ideas to the modeling of failure in solids 
and structures in the dynamic range, through the consideration of finite elements that 
incorporate strong discontinuities for the modeling of cracks and other similar localized 
solutions. 

This effort significantly extended the range of application of the methods that we have 
developed previously with the support of the AFOSR for elastic problems. In this way, 
the main goal can be summarized as the development of time-stepping algorithms that 
rigorously exhibit the non-negative energy dissipation characteristic of these inelastic sys- 
tems, while preserving the conservation laws of linear and angular momentum and the 
associated relative equilibria of the dynamical system. Existing classical techniques were 
developed in the context of linear problems and do not exhibit these crucial properties 
when employed in nonlinear applications. In fact, classical time-stepping algorithms (like 
New mark schemes and their variations) have been observed to numerical instabilities in 
the nonlinear range. These instabilities are characterized by an unbounded growth of 
the energy in finite time, despite the dissipative character of the underlying physical sys- 
tems under consideration. This situation clearly identifies the need for new and improved 
numerical algorithms, motivating the developments considered in this project. 

The completely different nature of inelastic problems, involving the additional set of plas- 
tic/damage evolution equations (usually of a unilaterally constrained character due to the 
presence of the so-called yield/damage surface condition), required the development of new 
ideas and schemes beyond the ones available for the elastic case. Our approach in address- 
ing these challenges can be summarized in the actual analysis of the discrete equations 
driving the design of the new numerical schemes, and the exact incorporation (by design) 
in the discrete system of the energy-momentum response of the underlying physical system. 
In this way, the rigorous proof of all the conservation/dissipation properties for general 
material models, accounting also for the finite element interpolation of the governing equa- 
tions, provides the robustness required to the computational tools for the analysis of the 
complex practical applications of interest to the Air Force. In this respect, we note that 
the mathematical analyses of the algorithms identified the need to develop new assumed 
strain finite element methods that conformed with the dissipative/conservation properties 
of the temporal approximation. This situation identified a new objective of the project, 
also successfully achieved. 

The improved stability properties of the newly developed integration algorithms are then 
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supported by rigorous mathematical analyses of the discrete dynamical systems that they 
generate. We also have given a special attention to the actual implementation of the new 
algorithms in the context of the finite element method. The combination of all these results 
has led to powerful novel computational tools, with the sound theoretical basis necessary 
for the analysis of the complex practical problems of interest to the Air Force. 

2. Brief Description of the Accomplishments 

The major results accomplished under this project can be summarized as follows: 

1. Energy- dissipative, momentum-conserving algorithms (EDMC schemes) for finite strain 
multiplicative plasticity. Continuing with preliminary results of a previous AFOSR research 
effort, we have developed new integration algorithms for finite strain plasticity that incor- 
porate the characteristic (and critical) property of non-negative energy dissipation in the 
discrete system, while inheriting also the conservation laws of linear and angular momenta. 
The construction of the new algorithms makes a crucial use of the arguments employed 
in the characterization of the the physical and mathematical properties of the continuum 
model, in the context of modern treatments based on a multiplicative decomposition of 
the deformation gradient in an elastic and plastic part. The resulting scheme conserves 
exactly both the linear and angular momenta, and provides the exact physical dissipation 
predicted by the model, including the exact energy conservation for an elastic step. This 
leads not only to physically better numerical results, but also to more numerically stable 
simulations. This improved numerical stability is to be contrasted with the numerical in- 
stabilities observed by existing schemes in this strongly nonlinear problem, even with its 
physically dissipative character. These results appeared in [1,2]*. 

2. Volume-preserving energy-momentum schemes for isochoric plastic models. Several im- 
portant applications of elastoplastic models (namely, metals) exhibit an isochoric plastic 
response, that is, there is no plastic change of volume. This response is a very characteristic 
physical property of these materials and, as such, crucial to reproduce in the actual numer- 
ical simulations. This physical property translates in a very rich geometric structure of the 
aforementioned multiplicative elastoplastic models, with a key role played by the elastic 
metric in the intermediate configuration defined by the plastic part of the deformation gra- 
dient. We have developed a new time-stepping approximation of this geometric structure 
that, when combined with the developments summarized above for general elastoplastic 
models, results in a volume preserving scheme that also exhibits the exact non-negative 
energy dissipation and momentum conservation laws of the underlying physical system. 
The improved numerical stability comes then with the added benefit of reproducing the 
plastic isochoric response of interest.   The new algorithm defines a new approximation 

'   The numbering of the references follows the list of publications presented below in 
page 14 of this report. 
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FIGURE 2.1 Three-dimensional elastoplastic solid in free flight. Sequence of deformations 
in the early stages of the motion with the spatial distribution of the equivalent plastic strain. 
Solution obtained with the new EDMC scheme. 
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solution obtained with the new EDMC scheme, showing the exact conservation of all these quan- 
tities. They correspond exactly to the momenta associated with the assumed initial velocities 
for the assumed undeformed initial configuration. 
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of the aforementioned geometric structure that controls the volumetric strain. The new 
algorithm is second order accurate in time, as desired. 

Figures 2.1, 2.2 and 2.3 illustrate these developments. They show the solution obtained 
in the modeling of the free flight of a three-dimensional solid consisting of a very stiff 
elastic cylindrical core and two flexible arms made of an elastoplastic material modeled 
with J2-flow theory of finite strain plasticity following the classical Mises yield function. 
The elastic response is based on Hencky's hyperelastic potential on the logarithmic elastic 
strains. The change of volume is then entirely elastic, with no plastic volumetric strain. 
The solid is given an initial velocity corresponding to a rotation around its center. The 
solid is in free flight afterwards. The total linear and angular momenta are then exactly 
conserved in this free motion, with the energy being dissipated (reduced) if plastic flow 
occurs while being fully conserved during purely elastic evolution steps. Figure 2.1 shows 
the deformed configuration of the solid at different times computed with the new volume- 
preserving EDMC scheme, depicting also the distribution of the equivalent plastic strain 
(thus showing the extent of the plastic flow in the material). The large finite deformations 
are apparent. Figure 2.2 shows the evolution in time of the three components of the 
linear momentum (left) and angular momentum (right) of the solid, confirming their exact 
conservation. Figure 2.3 shows the evolution of the total energy of the solution computed 
with the EDMC scheme and the classical trapezoidal rule (a member of the classical 
family of Newmark schemes) in combination with an exponential approximation of the 
plastic evolution equations, all for different time steps. A non-increasing energy evolution 
should be obtained after the initial stages when the load is applied. We can observe 
that, despite the dissipative character of the underlying physical system, the trapezoidal 
rule shows an uncontrolled growth of energy (blow-up) forcing to stop the computation. 
This numerical instability is observed for different time step sizes. This situation is to be 
contrasted with the energy evolution for the solution obtained by the new EDMC scheme. 
The energy dissipation is always strictly non-negative (by design) and, in fact, exact. In 
particular, full energy conservation is obtained during the elastic steps (again, by design). 
The significantly improved numerical stability properties of the new scheme are apparent. 
Furthermore, plots (not shown) confirm the lack of any plastic change of volume in the 
deformation of the solid, thus exactly reproducing the response of the solid. 

We presented the development of the volume-preserving energy-dissipative momentum- 
conserving algorithms for isochoric models of finite strain plasticity in the papers [3,5]. A 
summary of these results, with additional details of the ones discussed above, can be found 
in Appendix I of this final report. 

3. Conserving assumed strain finite elements for continuum problems. The quasi-incompre- 
ssible character of the plastic response of metals requires the consideration of locking-free 
finite elements for their spatial discretization. Assumed strain methods treating the volu- 
metric strain in a separate manner have been proven to be a reliable option in these situa- 
tions. However, the direct use of existing techniques destroys the conservation/dissipation 
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FIGURE 2.4 Impact of a cylindrical copper rod on a rigid wall, a) Problem definition (dis- 
tances in mm), showing a quarter of the specimen discretized with 976 brick elements. The rod 
is given the initial axial velocity of v0 = 0.227 mm//is, modeling the impact on the rigid wall 
by imposed axial displacements at its base, b) Evolution of the energy (total with potential 
and kinetic) showing the monotonic decrease of the total energy consequence of the exactly cap- 
tured plastic dissipation by the new EDMC time-stepping scheme in combination with the new 
assumed strain finite elements. Existing methods require a large amount of artificial numerical 
dissipation due to the appearance of highly oscillatory and unstable solutions, c) Deformed 
configurations in time showing the distribution of the equivalent plastic strain (half the speci- 
men shown from below-front). The large strains are apparent (illustrating the lack of locking), 
and so is the bulging of the specimen as the specimen shortens, agreeing with experimental 
tests for the considered material of pure copper with large strain hardening. 
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properties of the temporal discretizations discussed above, thus requiring the development 
of new alternative techniques. We have developed new assumed strain finite elements 
based on the classical scaling of the volumetric part of the deformation gradient (i.e. its 
determinant or Jacobian) by a mixed Jacobian, but requiring an alternative definition 
of the associated linearized strain operator in the equations of motion. After identify- 
ing the conditions for the final scheme to be numerically consistent and to comply with 
the conservation laws of linear and angular momenta, the associated relative equilibria, 
and the evolution of the energy, a general strategy for the definition of this "conserving 
consistent linearization" has been identified. Based on this new approach, we have devel- 
oped new quadrilateral and triangular elements for plane problems, and brick elements for 
three-dimensional applications. For example, a fully EDMC trilinear brick with constant 
volumetric strain (Q1/A0) and quadratic quad with linear volumetric strain (Q2/A1) are 
now available. 

Figure 2.4 illustrates the performance of the newly developed conserving assumed strain 
finite elements in a typical application with large (isochoric) plastic strains. It shows the 
results obtained in the classical benchmark problem of the impact of a cylindrical rod 
on a rigid wall (Taylor's problem). The new EDMC time-stepping algorithms avoid any 
instabilities in time, in contrast with classical existing schemes that require an excessive 
amount of numerical dissipation to accomplish a meaningful solution (without spurious 
oscillations and instabilities). We note again that this is a direct consequence of the new 
schemes capturing exactly the physical dissipation occurring in the solid. The effective- 
ness of the new assumed strain finite elements in avoiding volumetric locking is confirmed 
by the large strains involved and their agreement with experimental observations (not 
shown). Basic displacement finite element methods would lock in this simulation due to 
the quasi-incompressible character of the deformation given the isochoric plastic response 
of the solid. The new elements are locking free while exactly exhibiting the energy dissi- 
pation and momentum conservation properties of the EDMC scheme used in the temporal 
discretization. 

These results were presented in the papers [7,8,10]. Additional details can be found in 
Appendix II of this final report. 

4. Energy-dissipative momentum-conserving algorithms for finite strain thermo-elasticity. 
We have developed new time-stepping algorithms for coupled thermo-elasticity that in- 
herit by design the a-priori stability estimates of this physical system and its momenta 
conservation laws. The stress formula developed previously for uncoupled cases has been 
extended to account for the temperature coupling, defining in the process the proper tem- 
poral approximation of the conjugate entropy field. The proper treatment of the energy 
evolution equation, including heat conduction, has allowed to arrive to a new numerical 
scheme that exhibits rigorously the dissipative character of the so-called canonical free en- 
ergy characteristic of these systems. Complete mathematical analyses are available. These 
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FIGURE 2.5 Tumbling of a L-shaped thermo-elastic block: solution obtained with the new 
EDMC schemes for thermo-elasticity. a) Motion depicted by the configuration of the solid at 
different times (left to right and down) 'with the distribution of the temperature. The unde- 
formed solid (first top left frame) is given an initial loading on the top and bottom faces, being 
in free flight after this initial phase. The series of deformations illustrate the large displacements 
and strains that the solid is subjected to, with the temperature variation occurring from the 
associated thermo-elastic coupling, b) Evolution of the three components of the angular mo- 
mentum. After the initial loading phase, the three components are exactly conserved, as they 
must physically, showing the momentum conserving properties of the new scheme, c) Evolution 
of the canonical free energy with time. The new EDMC scheme conforms with the a-priori sta- 
bility estimate defined by the monotonic decrease of the canonical free energy, in contrast to the 
solution obtained by a classical scheme like trapezoidal rule exhibiting a nonlinear numerical 
instabilities in the form of an unbounded growth of the energy. 



F. Armero 10 

schemes can also be incorporated in a staggered (partitioned) solution of the problem. 
These results have been compiled in [12], with the plans of additional publications. In 
particular, the extension to coupled thermo-plasticity is also under consideration. 

Figure 2.5 illustrates the performance of the new EDMC scheme developed in this part 
of the project. It includes the deformation and temperature distribution of a L-shaped 
thermo-elastic block tumbling in space. The conservation of the angular momentum and 
the monotonic decrease of the canonical free energy due to heat conduction after the initial 
loading conforms with the same properties of the continuum system. Thermal heat con- 
duction introduces dissipation in the physical system, non-negative from the fundamental 
second law of thermodynamics, and leading to the monotonic decrease of the so-called 
canonical free energy. This defines an a-priori stability estimate that the numerical simu- 
lation must conform to for numerical stability (in the linear case, the canonical free energy 
strictly defines a norm of the solution in the displacement, velocity and temperature). The 
plot shows that the new EDMC does conform with this fundamental energy principle, 
thus leading to stable simulations of the motions of interest. This property is supported 
by rigorous mathematical analyses rigorously showing its satisfaction. This situation is 
to be contrasted with the performance of standard numerical schemes like the classical 
trapezoidal rule, also shown in the figure. The energy evolution is not monotonic in this 
case and, in fact, it leads to an unbounded growth, thus showing the instability of these 
classical schemes in the considered nonlinear range. The simulation blows up in this case, 
a performance that needs to be contrasted again with the new EDMC scheme. These 
instabilities are completely and rigorously avoided in the new schemes developed in this 
project. 

5. Extension to shell models. We have also considered the application of the newly de- 
veloped time-stepping algorithms to problems involving shells, as this is one of the main 
configurations in Air Force applications. In this way, we have developed the implemen- 
tation of these new methods in reduced-solid shell elements, incorporating also the new 
assumed strain treatment developed for continuum problems discussed above (Item 3). 
Enhanced strain treatments for the through-the-thickness shell response as well as the 
incorporation of common assumed strain treatments of the bending/shear response have 
been considered. We have considered both plastic and thermoelastic shells. In both cases, 
the implementation follows the ideas presented in [8] for the construction of assumed strain 
finite element methods. 

Figure 2.6 illustrate these results, currently under further development. It shows the 
solution obtained in the modeling of the motion of a L-shaped elastoplastic shell. The 
shell is loaded by transversal tractions along its extreme edges and at the central corner 
for a period of time, being in free-flight after this initial loading phase. The resulting 
motion is shown in that figure depicting the deformed configuration of the shell at different 
times.   The large displacement, rotations and strains are apparent.   The distribution of 
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FIGURE 2.6 Tumbling of a L-shaped elastoplastic shell: solution obtained 'with the new 
EDMC schemes for finite strain plasticity of nonlinear shells, a) Motion depicted by the con- 
figuration of the solid at different times (left to right and down) with the distribution of the 
equivalent plastic strain. The undeformed solid (first top left frame) is loaded with distributed 
forces at both extreme edges and central corner, being in free-flight after the initial loading 
phase. The series of deformations illustrate the large displacements and strains that the solid 
is subjected to, including large plastic strains, b) Evolution of the three components of the 
angular momentum. After the initial loading phase, the three components are exactly conserved 
as it must happen from physical considerations, hence showing the momentum conserving prop- 
erties of the new scheme, c) Evolution of the total energy and its kinetic and potential (strain 
plus hardening) energies. The monotonic evolution of the total energy is to be noted, with the 
energy decrease corresponding to the plastic dissipation captured exactly by the new EDMC 
scheme. 
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the equivalent plastic strain is also included, showing the extent of the plasticity. The 
important aspect is that the new EDMC scheme is able to capture exactly the energy 
dissipation of this plastic response. The evolution of the energy included in Figure 2.6 
confirms this property. 

6. Other results: numerical modeling of fracture and failure through the strong discon- 
tinuity approach. The previous accomplishments defined the main focus of this research 
project as outlined in the original grant proposal. In addition, we have started exploring 
the use of finite elements with embedded strong discontinuities for the analysis of dynamic 
failure of materials. The approach enhances the interpolations of traditional finite elements 
with the discontinuous solutions characteristic of the ultimate stages of the deformation of 
solids (e.g. cracks or shear bands). A multiscale approach allows to introduce these solu- 
tions (also known as strong discontinuities) into the finite elements at the local level, with 
enhanced parameters eliminated locally through their static condensation hence resulting 
in a very efficient solution of the global mechanical problem. A main advantage is that no 
remeshing is needed for the resolution of the discontinuity. 

We have presented in [4,6] a new strategy for the development of these enhancements in 
the infinitesimal range of small strains. The approach is based on the direct introduction in 
the discrete strain field of the finite elements of the strain modes necessary for the accurate 
resolution of the kinematics associated with a discontinuous displacement field. Piece-wise 
linear interpolations of the discontinuity jumps are considered along the discontinuity, in 
contrast with the piece-wise constant interpolations existing to date. The new numer- 
ical approach leads, in particular, to quadrilateral finite elements able to represent the 
separation of the discontinuities without a spurious transfer of stresses (or stress locking). 

The extension of these considerations to the finite deformation has been presented in 
[9]. In this case, the key aspect has been the development of a new enhancement of the 
deformation gradient, that conforms with the geometric structure of the problem, leading 
in particular to frame indifferent formulations. Furthermore, the new strategy has shown to 
be particularly appropriate for the analysis of failure and fracture of solids in the dynamic 
range. Preliminary results can be found in the technical report [11] for the infinitesimal 
case. These results have motivated and defined the research lines to follow in this effort as 
describe in the following section. 

3. Current and Future Work 

The results obtained in this project have allowed to identify a number of extensions and 
new lines of research for the near future. As indicated at the end of the last section, the 
numerical analysis of the failure and fracture of solids defines an important problem to 
be addressed, given the many applications of interest to the Air Force. In particular, the 
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numerical resolution of the highly non-smooth solutions observed in the ultimate stages 
of the deformation of solids sets out a very challenging problem. These solutions involve 
strong discontinuities whose modeling in a numerically discrete context require the design 
of special numerical methods for their resolution. Typical examples of these considerations 
are cracks in brittle or quasi-brittle materials, or shear bands (and similar localization 
bands) in ductile failures. 

As noted above, we are already involved in the development of new finite elements to 
capture these discontinuities at the element interiors. This is accomplished through a 
multi-scale treatment of the mechanical problem at hand, with the consideration of the 
discontinuities at the local (element) level, thus leading to very efficient numerical tech- 
niques, easily accommodating existing numerical methods for the large scale. 

The dynamic range defines a particularly difficult setting for the different additional effects 
to be resolved accurately and in a stable manner. For example, crack branching defines 
a difficult problem to be captured numerically, because of both the spatial discretization 
and the time-stepping scheme. In the former, and in the context of the considered finite 
elements with embedded strong discontinuities, the design of new element enhancements 
that can accommodate a bifurcating discontinuity defines a clear objective for the con- 
tinuing effort. Similarly, the development of stable temporal discretizations (extending 
the energy-dissipative momentum-conserving schemes developed in this project to cases 
involving an inelastic cohesive law along discontinuity surface) is another clear objective 
for future work. In addition, the need to consider additional physical effects (like coupled 
thermoplastic responses at high strain rates) motivates also the consideration of the ex- 
tension of the work develop here to those cases (e.g. EDMC time-stepping algorithms for 
nonlinear coupled thermoplasticity). 

This continuing effort will widen the range of application to the methods that we have 
developed in the current research project. The overall approach followed in it (that is, 
the mathematical analysis of the discrete equations drives the design of new numerical 
schemes) will be crucial in all of our future developments in this area. 

4. Personnel 

The P.I., Francisco Armero, was partially supported during the summer months of the 
project. Two graduate students have been funded under this grant: Christian Linder and 
Christian Zambrana-Rojas. Christian Linder continued as a Postdoc for three months after 
completion of his PhD Dissertation. 
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5. Publications under AFOSR Support 

The following papers have appeared and/or have been prepared during the performance 
of this grant acknowledging AFOSR support (2005/2008): 

1. Armero, F. [2005] "Energy-Dissipative Momentum-Conserving Time-Stepping Algo- 
rithms for Dynamic Plastic Finite Strain Plasticity," Proceedings of the VIII Interna- 
tional Conference on Computational Plasticity (COMPLAS 8), Barcelona, Spain. 

2. Armero, F. [2006] "Energy-Dissipative Momentum-Conserving Time-Stepping Algo- 
rithms for Finite Strain Multiplicative Plasticity," Computer Methods in Applied Me- 
chanics and Engineering, 195, 4862-4889. 

3. Armero, F. & Zambrana, C. [2006] "Numerical Integration of the Nonlinear Dynamics 
of Elastoplastic Solids," Proceedings of the III European Conference on Computational 
Mechanics (ECCM-06), Lisbon, Portugal. 

4. Armero, F. & Linder, C. [2006] "Recent Developments in the Formulation of Finite 
Elements with Embedded Strong Discontinuities," IUTAM Symp. on Discretization 
Methods for Evolving Discontinuities, IUTAM Book series, Springer, contributed ref- 
ereed article. 

5. Armero, F. & Zambrana, C. [2007] "Volume-Preserving Energy-Momentum Schemes 
for Isochoric Multiplicative Plasticity," Computer Methods in Applied Mechanics and 
Engineering, 196, 4130-4159. 

6. Linder, C. & Armero, F. [2007] "Finite Elements with Embedded Strong-Discontinuities 
for the Modeling of Failure of Solids," International Journal for Numerical Methods 
Engineering, 72, 1391-1433. 

7. Armero, F. [2007] "Energy-Momentum Algorithms for Nonlinear Solid Dynamics and 
their Assumed Strain Finite Element Formulation," Proceedings of COMPDYN07, 
Rethymno, Greece (to appear in the book Progress in Computational Dynamics and 
Earthquake Engineering, ed. by M. Papadrakakis et al, Taylor & Francis). 

8. Armero, F. [2008] "Assumed Strain Finite Element Methods for Conserving Tempo- 
ral Integrations in Nonlinear Solid Dynamics," International Journal for Numerical 
Methods in Engineering, 74, 1795-1847. 

9. Armero, F. & Linder, C. [2008] "New Finite Element Methods with Embedded Strong 
Discontinuities in the Finite Deformation Range," Computer Methods in Applied Me- 
chanics and Engineering, 197, 3138-3170. 

10. Armero, F. [2008] "Energy-Momentum Algorithms for the Nonlinear Dynamics of 
Elastoplastic Solids," IUTAM Symp. Theoretical, Modeling and Computational As- 
pects of Inelastic Media, IUTAM Book series, Springer, contributed refereed article. 
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11. Armero, F. & Linder C. [2008] "Numerical Simulation of Dynamic Fracture with Finite 
Elements with Embedded Strong Discontinuities," report no. UCB/SEMM-2008/01, 
UC Berkeley (to be submitted). 

12. Armero, F. [2008] "Energy-Momentum Algorithms for Nonlinear Coupled Thermoe- 
lasticity," report no. UCB/SEMM-2008/03, UC Berkeley (to be submitted). 

6. Interactions, Conference Contributions 

The results obtained in this research project have been presented in the following confer- 
ences/seminars during the performance of this grant (2005/2008): 

1. "Numerical Integration of the Nonlinear Dynamics of Solids and Structures," invited 
seminar, Department of Aerospace and Mechanical Engineering, University of South- 
ern California, January 20, 2005. 

2. "Energy-Dissipative Momentum-Conserving Time-Stepping Algorithms for Dynamic 
Plastic Finite Strain Plasticity," invited contribution, VIII International Conference 
on Computational Plasticity (COMPLAS 8), Barcelona, Spain, September 4-6 2005. 

3. "Finite Element Locking and the Enhanced Strain Formulation," CISM course on 
Mixed Finite Element Technologies, CISM Udine, Italy, September 26-30, 2005. 

4. "Numerical Integration of the Nonlinear Dynamics of Inelastic Solids and Structures," 
Department of Civil and Environmental Engineering, University of California at Los 
Angeles (UCLA), February 14 2006. 

5. "Numerical Integration of the Nonlinear Dynamics of Elastoplastic Solids," keynote 
lecture, 3rd European Conference on Computational Mechanics (ECCM 3), Lisbon, 
Portugal, June 5-9 2006. 

6. "Energy-Momentum Schemes for Finite Strain Plasticity," keynote lecture, 7th World 
Congress on Computational Mechanics (WCCM 7), Los Angeles CA, July 17-21 2006. 

7. "Finite Elements with Embedded Strong Discontinuities of Higher Order Kinematics," 
invited contribution, 7th World Congress on Computational Mechanics (WCCM 7), 
Los Angeles CA, July 17-21 2006. 

8. "Recent Developments in the Formulation of Finite Elements with Embedded Strong 
Discontinuities," invited contribution, IUTAM Symposium on Discretization Methods 
for Evolving Discontinuities, Lyon, France, September 4-7 2006. 

9. "Energy-Momentum Algorithms for Nonlinear Solid Dynamics and their Assumed 
Strain Finite Element Formulation," invited semi-plenary lecture, Computational Meth- 



F. Armero 16 

ods in Structural Dynamics and Earthquake Engineering (COMPDYN07), Rethymno, 
Greece, June 13-16 2007. 

10. "New Finite Elements with Embedded Strong Discontinuities," invited contribution, 
9th US National Congress on Computational Mechanics (USNCCM 9), San Francisco, 
CA, July 23-26, 2007. 

11. "Dynamic Fracture Using Finite Elements Enhanced with Cohesive Discontinuities," 
9th US National Congress on Computational Mechanics (USNCCM 9), San Francisco, 
CA, July 23-26, 2007. 

12. "Finite Elements with Embedded Discontinuities and Dynamic Fracture," invited con- 
tribution, IX International Conference on Computational Plasticity (COMPLAS 9), 
Barcelona, Spain, September 5-7 2007. 

13. "Numerical Integration in Nonlinear Solid and Structural Dynamics," Department of 
Civil and Environmental Engineering, Johns Hopkins University, December 17 2007. 

14. "Energy-Momentum Algorithms for Nonlinear Dynamics of Elastoplastic Solids," in- 
vited contribution, IUTAM Symposium on Theoretical, Modeling and Computational 
Aspects of Inelastic Media, Cape Town, South Africa, January 14-18 2008. 

15. "Finite Element Modeling of Kirchhoff Rods," invited contribution, 6th International 
Conference on Computation of Shell and Spatial Structures (IASS-IACM 2008), Cor- 
nell University, Ithaca, NY, May 28-31 2008. 

16. "Energy-Momentum Algorithms for Nonlinear Coupled Thermo-Elastodynamics," in- 
vited keynote lecture, 8th World Congress on Computational Mechanics (WCCM 8), 
Venice, Italy, June 30-July 4 2008. 

17. "Modeling of Dynamic Fracture using Finite Elements with Embedded Strong Dis- 
continuities," invited contribution, 8th World Congress on Computational Mechanics 
(WCCM 8), Venice, Italy, June 30-July 4 2008. 

7. Honors and Awards 

The PI, Francisco Armero was elected Fellow of the International Association of Compu- 
tational Mechanics (IACM) in 2004. The Fellows Award was given to him during the 6th 

World Congress on Computational Mechanics that took place in Beijing, China, September 
5-11, 2004. Additionally, Francisco Armero was awarded in the past the Young Investi- 
gator Award by the International Association for Computational Mechanics (IACM) in 
July 2002, the Juan C. Simo award and medal by SEMNI (Spanish Society for Numer- 
ical Methods in Engineering) in June 1999, the NSF CAREER award (National Science 
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Foundation) in June 1997, and the ONR Young Investigator Award (Office of the Naval 
Research) in June 1996. He also received the best paper award for "the most outstanding 
paper published in Engineering Computations in the year 1997". 

Additional honors to the PI, Francisco Armero, related to this research project during the 
performance of the grant include service as: 

1. Member of the editorial/advisory board of: 

• Communications in Numerical Methods in Engineering, April 2005-present. 

• ASCE Journal of Engineering Mechanics, Associate Editor, Sept. 2003-Oct. 2005. 

• Informes de la Construction, December 2006-present. 

• Computers & Concrete, April 2003-present. 

• Finite Elements in Analysis and Design, February 2002-present. 

• Computer Methods in Applied Mechanics and Engineering, June 2001-present. 

• International Journal for Numerical Methods in Engineering, January 2001-present. 

• Computers & Structures, November 1998-present. 

• International Journal of Numerical Methods in Fluids, November 1997-January 
2008. 

2. Committee service: 

• Committee on Computational Mechanics, ASCE Engineering Mechanics Division 
(August 1999-present), vice-chair (2003-2004, 2006-present), chair (August 2004- 
2006). 

• Technical Advisory Committee, 10t/l International Conference on Computational 
Plasticity (COMPLAS X), Barcelona, Spain, September 2-4, 2009. 

• International Advisory Board, Computational Methods in Structural Dynamics and 
Earthquake Engineering (COMPDYN09), Island of Rhodes, Greece, June 22-24, 
2009. 

• International Advisory Board, 1st International Conference on Computational Tech- 
nologies in Concrete Structures (CTCS09), Seoul, Korea, May 2009. 

• Scientific Advisory Committee, 9th International Conference on Computational 
Structures Technology, Athens, Greece, September 2-5, 2008. 

• Local Organizing Committee, 9 US National Congress on Computational Mechanics 
(USNCCM 9), San Francisco CA, July 17-19, 2007. 

• International Advisory Board, Computational Methods in Structural Dynamics and 
Earthquake Engineering (COMPDYN07), Rethymnon, Crete, Greece, June 13-15, 
2007. 

• Technical Advisory Committee, International Conference on Coupled Problems, 
Ibiza, Spain, May 21-23, 2007. 



F. Armero 18 

• Technical Advisory Committee, 9th International Conference on Computational 
Plasticity (COMPLAS IX), Barcelona, Spain, September 5-7, 2007. 

• Scientific Programme Committee, 7th World Congress on Computational Mechanics 
(WCCM7), Los Angeles CA, U.S.A., July 16-22, 2006. 

• Scientific Committee, III European Conference on Computational Mechanics, Lis- 
bon, Portugal, June 5-9, 2006. 

• Scientific Advisory Committee, 8th International Conference on Computational Struc- 
tures Technology, Las Palmas de Gran Canaria, Spain, September 12-15, 2006. 

• Scientific Committee, 5th International Conference on Computation of Shells and 
Spatial Structures (IASS-IACM 2005), Salzburg, Austria, June 1-4, 2005. 

• Technical Advisory Committee, International Conference on Coupled Problems, 
Santorini Island, Greece, May 25-28, 2005. 

• Technical Advisory Committee, 8th International Conference on Computational 
Plasticity (COMPLAS VIII), Barcelona, Spain, September 5-8, 2005. 

• Scientific Advisory Committee, 7th International Conference on Computational Struc- 
tures Technology, Lisbon, Portugal, September 7-9, 2004. 

3. Organizer of symposia: 

• "Numerical Techniques for the Modeling of Material Failure," 7 sessions, 38 contri- 
butions, 8th World Congress on Computational Mechanics (VIII WCCM), Venice, 
Italy, June 30-July 4, 2008. 

• "Numerical Techniques for the Modeling of Material Failure in Solids: Symposium 
in Honor of Professor Kaspar Willam on the Occasion of his 65th birthday," 7 ses- 
sions, 32 contributions, 9th US National Congress on Computational Mechanics (IX 
USNCCM), San Francisco CA, July 23-26 2007. 

• "Modeling and Numerical Simulation of of Failure in Inelastic Shells and Spatial 
Structures," 5th International Conference on Computation of Shell and Spatial 
Structures (IASS-IACM 2005), Salzburg, Austria, June 1-4 2005. 

8. Outline of the Rest the Report 

We have added two appendices to this report to illustrate in more detail some of the 
technical results obtained in this project. Appendix I describes the formulation of energy- 
dissipative momentum-conserving schemes for finite strain plasticity that also conserve 
the plastic volumetric response of the underlying model (Item 2 in Section 2). Appendix 
II describes the development of the new assumed strain finite element methods for the 
conserving time-stepping algorithms (Item 3 in Section 2). A more detailed description 
follows. 
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8.1. Appendix I: Volume-Preserving Energy-Dissipative Momentum- 
Conserving Time-Stepping Algorithms for Isochoric Plastic Models 
of Multiplicative Plasticity 

This appendix presents a new energy-dissipative momentum-conserving algorithm for mul- 
tiplicative finite strain plasticity (F = FeFp) that also preserves exactly the plastic volume 
for isochoric plastic models. The new algorithm exhibits exactly the conservation laws of 
linear and angular momentum of the underlying physical problem as well as its energy 
evolution. A strictly positive energy dissipation, in fact the exact energy dissipation, is 
obtained by design during plastic steps while enforcing the plastic consistency (i.e. the 
yield condition) on the final stress appearing in the equations of motion. Exact energy 
conservation is attained, in particular, during elastic steps. The aforementioned preser- 
vation of the plastic volume is obtained by a new treatment of the geometric structure 
behind the considered multiplicative models of finite strain plasticity. Namely, we present 
a new approximation of the reference and elastic metrics whose contractions with the in- 
cremental total and elastic strains lead exactly to the increment of the total and elastic 
natural volumetric strains, respectively. The elastic metric is defined in the intermediate 
configuration, defined itself by the proper discrete approximation in time of the plastic 
deformation gradient Fv. The new algorithm extends to the plastic range existing energy- 
momentum conserving schemes for nonlinear elastic problems, but incorporating a new 
modified elastic stress formula consistent with this new geometric setting. The inherited 
conservation laws of momenta and, especially, the non-negative character of the energy 
dissipation leads to an improved performance over existing, more classical schemes show- 
ing numerical instabilities in the considered highly nonlinear geometric setting of large 
deformations and strains. Several numerical simulations are presented illustrating these 
properties. 

8.2. Appendix II: Assumed Strain Finite Element Methods for Conserving 
Time-Stepping Algorithms 

This appendix presents a new assumed strain finite element formulation (or B-bar method) 
for the locking-free simulation of nearly incompressible elastic and inelastic solids in the 
finite deformation dynamic range that also preserves the conservation/dissipation proper- 
ties of the so-called energy-dissipative momentum-conserving (EDMC) time-stepping algo- 
rithms. The general setting of finite strain plasticity is considered, including hyperelastic 
models as a particular case. The main motivation of this work is to avoid the nonlinear 
numerical instabilities observed in classical numerical schemes with unbounded growth of 
the energy (even in the plastic case) by introducing the exact dissipation/conservation of 
the energy in the discrete system by design. The incorporation of the conservation laws 
of linear and angular momenta, and the preservation of the associated relative equilibria, 
is also obtained. The paper identifies the conditions that the linearized strain operator 
(or, simply, the B-bar operator as it is usually known) has to satisfy for the preserva- 
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tion of these properties in time. These conditions require the definition of the assumed 
strain operator, originally developed by with spatial considerations only, accounting for 
the temporal discretization in the definition of the associated strain variations. As a re- 
sult, we arrive to a fully discrete system in space and time that shows exactly all these 
conservation/dissipation laws of the underlying physical system, including the exact plas- 
tic dissipation of the energy, with exact energy conservation for elastic steps. Numerical 
simulations are presented to illustrate the performance of the new formulation. 



APPENDIX I 
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1.1. Introduction 

Classical time-stepping algorithms for the numerical integration of problems in solid 
and structural dynamics, like the Newmark scheme NEWMARK [1959] and its variations 
(see HUGHES [1987] for a complete account), have been shown to exhibit serious limita- 
tions when applied to geometrically nonlinear problems despite their good performance 
in the linear setting. These limitations include not only the lack of preserving impor- 
tant conservation laws of the motion, like the conservation law of angular momentum, 
but also to numerical instabilities in the form of an unbounded growth of energy. These 
instabilities limit severely the time step size that can be used in the simulations, even 
in algorithms that have been proven to be unconditionally stable in the linear range. 
This situation has motivated the development of the so-called energy-momentum schemes, 
where the conservation laws of momenta and energy are embedded in the algorithm by 
design; see CRISFIELD & SHI [1994],GONZALEZ [2000],SIMO & TARNOW [1992], among 
others, and ARMERO & ROMERO [2001a],ARMERO & ROMERO [2001b]],KUHL & CR- 

ISFIELD [1997],KUHL & RAMM [1996] for extensions exhibiting a controllable numerical 
dissipation in the high-frequency to handle the high numerical stiffness of the systems of 
interest. We note in this respect that classical high-frequency dissipative schemes, like the 
HHT (see HUGHES [1987]), loose also their unconditional stability in the nonlinear range 
ARMERO & ROMERO [2001a]. 

These numerical instabilities have also been observed in the elastoplastic range at 
finite strains, thus motivating the extensions of the above energy-momentum schemes for 
elastic systems to this inelastic setting, as considered in MENG& LAURSEN [2002],NOELS 

ET AL [2004]. A major challenge in these problems is the proper integration of the plas- 
tic evolution equations for the plastic internal variables giving also the stresses or, in 
other words, the proper return mapping algorithm. In this context, the work presented in 
MENG& LAURSEN [2002] considers standard existing return mapping algorithms with an 
additional projection step on the stress, along the lines presented in GONZALEZ [2000] for 
elastic problems, to recover the proper energy dissipation in the plastic range. This step, 
however, disturbs the satisfaction of the initially enforced plastic consistency condition for 
the final resulting stress. The algorithms presented in NOELS ET AL [2004] considered 
hypoelastic based models, thus being able to impose only the conservation/dissipation in 
very specific particular cases. 

We have recently presented in ARMERO [2006],ARMERO [2005] an alternative strategy 
leading to new energy-dissipative momentum-conserving time-stepping algorithm for mul- 
tiplicative plasticity (F = FeFp) that exhibits the exact energy dissipation of the underly- 
ing physical system, while enforcing exactly the consistency condition on the final stresses. 
The development of the new algorithm follows the same arguments leading to these con- 
servation/dissipation properties for the continuum problem, identifying in the process the 
proper discrete approximation of the plastic strain rate that preserves the dissipative char- 
acter of the (discrete) plastic flow. The final scheme is implemented following the classical 
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structure of return mapping algorithms consisting of an elastic trial state followed a plastic 
corrector imposing the yield condition on the stresses (or its viscoplastic regularization). 
However, in contrast with existing exponential return mapping algorithms, originally pro- 
posed in ETEROVICH & BATHE [1990],CUITINHO & ORTIZ [1992],SIMO [1992],WEBER 

& ANAND [1990] (see complete details in the monograph SlMO [1998]), the new scheme 
involves an algebraic approximation of the flow rule in the updated plastic deformation 
gradient F%+1, not enforcing automatically the isochoric character of the plastic flow in 
isochoric plastic models like the models of J2-flow theory for metals. 

It is precisely the goal of this contribution to develop alternative algorithms that also 
exhibit this volume-preserving property. As shown in the developments below, the cru- 
cial observation in the accomplishment of this goal is the proper approximation of the 
geometric structure behind the considered multiplicative models of finite strain plasticity. 
In this way, the new algorithm considers explicitly the approximation of the metrics in 
the reference and intermediate configurations that define the change of volumetric strains, 
total and elastic respectively, in these models. The actual definition of the intermediate 
configuration in the discrete setting of a time step requires special considerations for the 
proper approximation of this geometric structure. Altogether, we develop in this work a 
new volume-preserving energy-dissipative momentum-conserving scheme that exactly pre- 
serves the isochoric character of the plastic flow in the aforementioned models of metal 
plasticity while still preserving exactly the conservation laws of linear and angular mo- 
menta, and also recovering the exact energy dissipation of the physical system. This 
means, in particular, that exact energy conservation is obtained for elastic steps, extend- 
ing to the elastoplastic case existing energy-momentum schemes with the aforementioned 
improved stability properties. 

An outline of the rest of the paper is as follows. Section 1.2 presents a summary of 
the governing equations of finite strain multiplicative plasticity in the dynamic range with 
an outline of the arguments leading to the conservation/dissipation properties of interest 
here, including the geometric structure behind these equations. Following the approach 
advocated here, it is the analog of these very same arguments that leads to the formu- 
lation of the new volume-preserving energy-dissipative momentum-conserving scheme, as 
developed in Section 1.3. Section 1.4 present representative numerical simulations illustrat- 
ing the performance of the new algorithm in comparison with existing schemes. Finally, 
Section 1.5 includes some final remarks. 

1.2. Problem Definition 

We summarize in this section the problem of interest in this work. In this way, 
Section 1.2.1 describes the governing equations, including the equations of motion and the 
relations defining the multiplicative models of finite strain plasticity. Important in our 
developments is to fully characterize the dissipative character of the final equations, as 
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FIGURE 1.2.1 Finite strain multiplicative plasticity. Problem definition 

done in that section, and the geometric setting defining the volumetric strain changes in 
their elastic and plastic parts. This is discussed in Section 1.2.2. We refer to SlMO [1998] 
for complete details on the results summarized here. 

1.2.1. The governing equations and energy dissipation in multiplicative 
plasticity 

We are interested in the motion cp : B x [0, T] —> M   of a solid represented by B c M 
in the time interval T, determined by the weak equation 

/ Po<p-8<pdV+ [ S: (FTGRAD(Scp))s dV = Gext(cp,Scp) , (1.2.1) 
JB JB 

for all admissible variations 5<p, that is, 5<p = 0 on dvB c dB (the part of the boundary 
where the deformation ip is imposed). Here we have considered the deformation gradient 
F = GRAD(<p)i the second Piola-Kirchhoff stress tensor S = ST (symmetric), the refer- 
ence density p0 and the solid's acceleration <p = d2<p/dt2. The right-hand-side of (1.2.1) 
corresponds to the virtual work of the external loading denoted generically by Gext. 

We are interested in models of multiplicative plasticity defined by the elastoplastic 
decomposition 

F = FeFp , (1.2.2) 

defining locally the intermediate configuration Op
x by the plastic deformation gradient Fp; 

see Figure 1.2.1.   The elastic part of the deformation gradient Fe defines the stresses S 
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through the hyperelastic relations 

-i -     -T -       dWe 

S = FP    SFP        with    S = 2—— , (1.2.3) 
dCe v       ' 

in the intermediate configuration Op
x for the elastic potential We(Ce) in terms of the 

T 
elastic right Cauchy-Green tensor Ce = Fe Fe (by frame indifference).   We note the 
relation 

We = S : \& , (1.2.4) 

giving the change of elastic strain energy. 

Assuming for simplicity the case of no external loading (that is, Gext = 0 and d^B = 
0), the insertion of the velocity tp (now an admissible variation) in the variation slot of 
(1.2.1) leads to the energy relation 

d 
dt 

f \poWvf dV + We(Ce)+H(a)   =-  ! [S:Dp + qa]  dV , (1.2.5) 
JB 2 \ JB 

total  energy H(t) plastic dissipation T> 

identifying the plastic strain rate 

-T    • 
Dp := sym Ge 

XF
P    CFP     -Ce)  , (1.2.6) 

for Lp = FPFP and Ge := Ce . In (1.2.5) we have introduced the hardening potential 
H(a) in terms of the strain-like internal variable a and its conjugate stress-like variable 
q = —dH/da. We assume for simplicity the case of isotropic hardening in terms of the 
scalar equivalent plastic strain a. 

The role of Ge in the definition of the plastic strain rate Dp in (1.2.6) is to be noted, 
defining the proper geometric setting in the intermediate configuration Op

x. Indeed, we 
can identify this (symmetric positive definite) tensor Ge = Ce as the metric in that 
configuration, allowing to define the "two-cova" tensor associated with Lp before taking 
its symmetric part. Similarly, we identify the metric G = C_1 for C = FTF in the 
reference configuration Ox; see Figure 1.2.1. 

For the developments below, it is important to emphasize that the actual calculation 
of the energy evolution (1.2.5) identifies the plastic strain rate (1.2.6) as it appears in the 
plastic dissipation V. It is precisely the physical requirement 

V > 0    (second law) (1.2.7) 

that motivates the use of this plastic strain rate Dp in the formulation of plastic models. 
A general elastoplastic model can be written as 

Dp = 1N4>-(S,q;Ge), (1.2.8) 

Wp = 7 MWP (S, q; Ge) , (1.2.9) 

a = 1n4>q{S,q]G
e), (1.2.10) 
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in the intermediate configuration Ox. Here, we have introduced the plastic spin Wp 

Wp := skew Ge (1.2.11) 

in (1.2.9) so the whole plastic deformation gradient rate Fp is determined by the plastic 
evolution equations (I.2.8)-(I.2.9). This requires nine components in three-dimensional 
problems, given by the six components of the (symmetric) plastic strain rate Dp and the 
three components associated to the skew plastic spin Wp. Equation (1.2.8) corresponds 
to the flow rule whereas equation (1.2.10) defines the so-called hardening law. 

The plastic multiplier 7 in equations (I.2.8)-(I.2.9) is determined by the Kuhn-Tucker 
loading/unloading and consistency conditions 

0(S,g;Ge)<O,     7>0,     </>7 = 0 ,     h = 0 (1-2.12) 

for a general yield function (f>(S, q; Ge). Note the dependence on the metric Ge of the 
intermediate configuration Op

x of both the yield function and the plastic flow vectors in 
(I.2.8)-(I.2.9), besides the stress variables S and q. The Perzyna regularization of equations 
(1.2.12) defines the viscoplastic model 

1=9M,     for    3(0 = (°        +     .    n    . . Ti~^ (1-2-13) 
TJ y monotomcally increasing    tor <p > 0 , 

and a viscous parameter r\ > 0, recovering the elastoplastic equations (1.2.12) in the limit 

A typical choice for the flow vectors in (I.2.8)-(I.2.9) is given by the so-called associated 
relations N** = %        and        n*« = fq> (L2-14) 
with a vanishing plastic spin MWP = 0, especially for isotropic models. The flow vectors 
(1.2.14) result also from the classical principle of maximum plastic dissipation; see SlMO 
[1998]. 

Remark 1.2.1 The physical condition (1.2.7) is easily satisfied by the associated plastic 
flow vectors (1.2.14) for yield functions of the form 

0(S, 9; G
e) = f (5; Ge) -\J\[°y-q}, (1-2.15) 

for the initial yield limit ay > 0 and a positively homogeneous function of degree one 
(i.e. (f)(\S;Ge) = X(j)(XS;Ge) for A > 0). After using Euler's theorem of homogeneous 
functions, the plastic dissipation reads then, 

V = I   \j\l<TydV>U, (1.2.16) 

by the Kuhn-Tucker condition (1.2.12)4. A similar argument gives the non-negative char- 
acter of the dissipation in (1.2.5) for the viscoplastic case (1.2.13). • 



 Final Report, FA9550-05-1-0117 27 

Remark 1.2.2 The equation of motion (1.2.1) has also additional conservation laws of 
momenta given the symmetries in the resulting dynamical system. In this way, for the 
case of no external loading (Gext = 0 and d^B = 0), we have 

I =  / Po<P dV = constant    and    j =  / ip x p0ip dV = constant , (1.2.17) 
JB JB 

along the solutions of the problem. The vectors in (1.2.17) correspond to the linear and 
angular momentum, respectively. Their conservation follows easily by inserting the varia- 
tions Sip = c and Sip = c x ip for all c £ M in (1.2.1), admissible variations for the case 
considered here. • 

1.2.2. The volume change and isochoric plastic models 

Metals are known to exhibit no plastic change of volume in the strain ranges of interest. 
In the finite deformation setting considered in the previous section, the natural volumetric 
strain is given by 

£„:=logJ    for    J = det[F] , (1.2.18) 

the Jacobian J and its natural logarithm log.   The multiplicative decomposition (1.2.2) 
leads to the additive decomposition 

ev=ee
v + ep

vl (1.2.19) 

for the elastic and plastic parts 

el = log Je    and    ep = log Jp , (1.2.20) 

in terms of the elastic and plastic Jacobians Je = det [-Fe] and Jp = det [Fp], respectively. 

Fundamental to the developments below are the rate relations 

iv = \c : G        and        ee
v = \& : Ge , (1.2.21) 

Zi Zi 

for the total and elastic metrics G and Ge in the reference Ox and intermediate configu- 
rations Op

x, respectively. Given the plastic strain rate (1.2.6), we can write 

Ge : Dp = -C : (Fp-1GeFp"T) - -Ce : Ge = ev - ee
v = ep

v , (1.2.22) 
Z \ / Zi 

after noting the relation 
-T 

G = FP   GeFp     , (1.2.23) 

as a simple algebraic calculation shows. The general flow rule (1.2.8) leads then 

ep = 7 N*. : Ge , (1.2.24) 
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and hence we have 

Jp = 1        if        N+s : Ge = 0 , (1.2.25) 

recovering the desired isochoric character of the plastic flow when this last condition holds. 
It is the goal of this work to develop integration algorithms for the plastic evolution equa- 
tions (I.2.8)-(I.2.10) that conforms with this estimate while exhibiting the energy dissipa- 
tion (1.2.5) and the momentum conservation laws discussed in Remark 1.2.2. 

Relation (1.2.23) allows also to define the plastic deformation gradient Fp in terms of 
the metrics G and Ge. Indeed, introducing the polar decompositions 

F = RU        and        Fe = ReUe , (1.2.26) 

we can write 
FP = Ge1/2

A G~1/2    for the rotation    A = ReTR , (1.2.27) 

as a simple calculation shows. 

Remark 1.2.3 A typical example of isochoric plastic model is given by the von Mises 
yield function, written in the form (1.2.15) with 

S;Ge) = JG^-1 DEVGe[S] : DEVGe[5]  Gel 

= ^dev [r] : dev [r] = ||dev [r] || , (1.2.28) 

where we have introduced the deviatoric part of the stress S in the intermediate configu- 

'x 

DEVGe[5] = S - ^   (S : G3'1]  Ge , (1.2.29) 

ration Op 

in the metric Ge of that configuration, and the corresponding classical deviatoric part in 
the current configuration 

dev [r] = Fe DEVGe[£] FeT = r - \  (r : 1) 1 , (1.2.30) 

of the Kirchhoff stresses r = FSFT = FeSFe  .   The associated plastic flow vector is 
then given by 

^ = f| = i G"-1 DEVGe[5]  CT-1 = F*T^%Fe , (1.2.31) 
OS      0 L   J ||dev[rj || 

which can be easily seen to satisfy the condition (1.2.25). • 
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1.3. Volume-Preserving Energy-Dissipative Momentum-Conser- 
ving Schemes 

We develop in this section the new EDMC scheme for the integration of the plastic- 

ity problem summarized in the previous section. Section 1.3.1 presents general energy- 

dissipative momentum-conserving approximations in this context, while Section 1.3.2 dis- 

cusses approximations of the corresponding geometric structure that, in addition, preserves 

the volume change of the plastic flow. Section 1.3.3 discusses briefly the numerical imple- 

mentation of the resulting scheme. 

1.3.1. Energy-dissipative momentum-conserving approximations 

The interest here is the development of one-step time-stepping algorithms for the 

solution of the governing equation (1.2.1). To this purpose, we consider the general ap- 

proximation 

cpn+1 - <fn = At v* (1.3.1) 

PoVn+\+ 
Vn -Sip + S*: (F?GRAD(6<p))' dV = GexU (1.3.2) 

At 

for all admissible variations Scp in a generic time step [tn,tn+i] with At = tn+i — tn 

and a generic second-order approximation of the external loading (say the original Gext 

evaluated at the mid-point (tn + tn+i)/2). The quantities (•)* need to be defines such that 

the conservation/dissipation laws described in the previous section are inherited by the 

discrete equations (I.3.1)-(I.3.2). 

The conservation of linear momentum (ln+i = ln) for no external loading is triv- 

ially satisfied as it corresponds to the discrete equation (1.3.1). Following an argument 

completely analogous to the one discussed in Remark 1.2.2 leading to the conservation 

laws (1.2.17) for the continue, we obtain the conservation law of angular momentum (i.e. 

jn+i = jn for no external loading) for a symmetric stress tensor S* and the choice 

F* = Fn+i = -(Fn + Fn+1)     and    v* \\ vn+i = -(vn + vn+1) , (1.3.3) 

as an algebraic calculation shows; see SlMO & TARNOW [1992], ARMERO & ROMERO 

[2001a]. The fact that the velocity approximation v* needs only to be a vector parallel to 

the mid-point value vn+i has been exploited in ARMERO & ROMERO [2001a], ARMERO & 

ROMERO [2001b]] as a way to introduce numerical dissipation to handle the high numerical 

stiffness of the system of equations (I.3.1)-(I.3.2). 

Similarly, following the same arguments leading to the energy evolution equation 

(1.2.5), we obtain for the case of no external loading {Gext = 0 and d^B = 0) the in- 

cremental energy relation 

Hn+i — Hn {w:+1 - w:) - &: \A& dV 
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S* : ^ (Ff^ACFf1 ACe) +q*Aa dV (1.3.4) 

T> 

for the total energy HB (i = {0,1}) defined in (1.2.5), after introducing the stress 

S* = F?S*F?T , (1.3.5) 

for some approximation F£ defining the discrete intermediate configuration O^*' an<^ the 
hardening variable 

g* = , (1.3.6) 

so g*Act = A7i. Here, we have used the notation A(-) = (-)n+i — ()n- 

A first step in recovering the continuum estimate (1.2.5) consists in the proper approx- 
imation of the stress formula (1.2.3)2 so the first integral of the right-hand-side of (1.3.4) 
vanishes (or it is negative to account for numerical dissipation; see Remark 1.3.1 below). 
Here we consider the discrete formula 

S(C n-\-i 
+ 2 

We(Ce
n+1) -W°(C%) - S(Ce

n+ 

GlACe : ACeGl 
2    GZACeGZ (1.3.7) 

for an approximation of the elastic metric G% as developed in the next section. Here 
S(C*i) denotes the gradient formula (1.2.3)2 evaluated at C*+1 = (C„ + C^+1)/2. The 

stress formula (1.3.7) can be seen to be a projection of this value to give the incremental 
elastic strain energy when contracted with |ACe. It is a modification of the formula 
originally proposed in GONZALEZ [2000] accounting for the presence of the elastic metric 
G%, hence leading to a properly invariant formula. We note that the denominator in (1.3.7) 
only vanishes when ACe does since 

GtACe : ACeGl 
1/2 1/2 ll0 

\Gl    ACeGt      2 > 0 (1.3.8) 

given the positive-definite character of the metric G%. Therefore, the second-term in (1.3.7) 
vanishes when ACe = 0. 

The key aspect of the discrete energy evolution (1.3.4) is that it reveals the proper 
approximation of the plastic strain rate (1.2.6) so the exact energy dissipation is recov- 
ered. Indeed, following the same arguments as for the continuum problem we consider the 
discrete plastic evolution equations 

(1.3.9) 

1 
2 F? TACF£ ' - ACe 

skew Gf1 (FZ+1 - Fn) Ff1' =    A1 MWP(S^q^,Gt) > 

«n+l - «r t    =    A7^(S„g,;G;)    J 
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for the discrete plastic multiplier A7 defined by the loading/unloading conditions 

0* = 0(S*, q*; G%) < 0 ,    A7 > 0    A7 0, = 0 . (1.3.10) 

As in the continuum case, these relations are replaced for a viscoplastic model of the form 
(1.2.13) by 

A7=^M, (1.3.11) 
V 

where 0* is defined by (1.3.10) 1. 

The flow vectors in the left-hand-side of the discrete plastic evolution equations (1.3.9) 
are defined by the assumed plastic model. The inclusion of these equations in the energy 
evolution equation (1.3.4) leads to the exact energy dissipation for the discrete equations. 
In particular, for the associated plastic models based on yield functions of the form (1.2.15) 
we recover 

V =  I ^ A7 ay dV > 0 , (1.3.12) 

thus recovering (1.2.16), and resulting in the exact energy conservation for elastic steps 
(A7 = 0). We note that these dissipation/conservation properties hold for any approx- 
imation of the metric G% and the plastic deformation gradient F* defining the discrete 
intermediate configuration Op

x^. A second-order approximation is given by the values 

*? = \ {K + F%+1)     and    G% = (c^i)"1 , (1.3.13) 

as originally proposed in ARMERO [2006]. We develop alternative definitions of these 
quantities that lead to the proper treatment of the plastic volume in the next section. 

Remark 1.3.1 We refer to ARMERO [2006] for a discussion on additional considerations 
for the inclusion of a controllable high-frequency energy dissipation along the lines of the 
EDMC methods proposed in ARMERO & ROMERO [2001a], ARMERO & ROMERO [2001b]] 
for nonlinear elastodynamics. • 

Remark 1.3.2 For simplicity in the presentation, we have considered the semi-discrete 
in time equations (I.3.1)-(I.3.2). However, the fully discrete equations, accounting for the 
spatial discretization, need to be considered. The basic displacement finite element model 
is trivially recovered from (I.3.1)-(I.3.2). However, this basic approach is known to lead 
to locking in the considered elastoplastic context, as first noted in NAGTEGAAL ET AL 

[1974]. The simulations presented in Section 1.4 consider the mixed treatment presented 
in GONZALEZ [2000] adapted to the elastoplastic problem considered here. Alternative 
assumed strain treatments preserving the conservation/dissipation properties of the mo- 
menta and energy can be found in ARMERO [2008]. The very same conservation/dissipation 
properties of the time discrete schemes, the interest in this paper, apply to these cases. • 
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1.3.2. The discrete geometric structure 

It remains to define the proper geometric structure of the discrete equations so the 
volumetric properties of the continuum plastic flow are preserved. The key aspect is given 
by the relations (1.2.21), whose discrete analog we seek. That is, we require that the 
discrete metrics C* and G% in the reference and intermediate configurations, respectively, 
satisfy the incremental relations 

Ae, AC : C* and As! 
1 
ACe : Gl (1.3.14) 

2 "      2 

for the increments of total and elastic volumetric strains in (1.2.20), while defining a second- 
order approximation of the continuum values C_1 and Ce    , respectively. 

Following the same strategy as for the stresses in the previous section, we consider 
a mid-point approximation of these values with a projection term enforcing the relations 
(1.3.14). In this way, we define 

Gr* C"^i+2- 
log(Jn+i/Jn) - C n+; IAC 

n+ C"*  AC: ACe"* 
C~\ACC n+ n+; 

n+ n+; 
(1.3.15) 

for the metric in the reference configuration Ox*, with Cn+i = (Cn + C„+i)/2 and its 

inverse C  \ , Jn+i = (det [Cn+i]) '    and Jn = (det [Cn]) '   and .1/2 
n+ 

G% 
log (J«+1/J«) - Cl'_ : \AC -l ~~o yn-\-i.l "nj        "riXi   •   2—~ -1 -1 

C!,i +2 —i—— . „ 2„ n Ce
xlACeCe

xl n+; C^AC6 : ACeCe~\ n+7 n+7 

n+ ra+- 
(1.3.16) 

for the metric in the intermediate configuration Ox, with C 
1/2 

n-\-i 

1/2   ' 

(Q + Q+1)/2andits 

inverse C^+1, J^+i = (det [C^+1]) and J^ = (det [C^]) . We note again that the de- 
nominators in these expressions are well-defined, vanishing when the respective numerators 
vanish, that is, when AC and ACe vanish, respectively. 

The use of the metrics (1.3.15) and (1.3.16) in combination with the discrete flow rule 
(I.3.9)i leads directly to the relation 

1 
A7 N4 s '• G<* \AC: (F? 'GtFP T 

1 
AC:G» ]-ACe : G% 

2 

-ACe : Gl 
2 

= Ae - Aee = Aep (1.3.17) 

the complete analog of the continuum relation (1.2.24), as long as (1.2.23) holds in this 
-1 -T 

discrete setting, that is, as long as C* = F*    G%F*     .  This is obtained by considering 
the approximation of the continuum relation (1.2.27) given by 

ei/2 -1/2 
with T\l/2 A* = {An+1A

T
ny^A (1.3.18) 
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The rotation A* corresponds to a second-order interpolation of the rotation A in (1.2.27) 
T T 

from the end values An = R^ Rn and An_|_i = R^l+1Rn+1. Formula (1.3.18)2 can be 
efficiently implemented (with algebraic operations only) using quaternions: 

q^ =    ^ + qn+i    ^ (L3ig) 

\\Qn + Qn+lW 

for the quaternions q associated to the different rotations A; see SHOEMAKE [1985]. We 
refer to ARMERO & ZAMBRANA [2007] for complete details, including the linearization of 
the rotation interpolation formulas (1.3.18) and (1.3.19). 

These relations define completely the new volume-preserving energy-dissipative momentum- 
conserving scheme and prove the following theorem. 

Proposition 1.3.1 The one-step time-stepping algorithm defined by the global relations 
(I.3.1)-(I.3.2) with the stresses S* defined by (1.3.5) in terms of S* given by the elastic 
stress formula (1.3.7) and the approximation (I.3.9)-(I.3.10) (or (I.3.9)-(I.3.11) for the 
viscoplastic case) with the hardening variable q* defined by (1.3.6) satisfy: 

i.  The conservation laws of linear and angular momentum are exactly preserved. 

ii.  The energy evolves following the relation (Gext = 0) 

Hn+1 -Hn = -V, (1.3.20) 

for the exact physical dissipation V > 0, with V = 0 for elastic steps. 

Hi.  The plastic volume is exactly preserved, that is, 

J^+1 = J% = 1        for isochoric plastic models, (1.3.21) 

with the last property holding for the approximations (1.3.15) and (1.3.16) of the reference 
and elastic metrics, respectively, the latter defined in the intermediate configuration Ov

x% 

determined by the plastic deformation gradient (1.3.18). 

Remark 1.3.3 Other formulas for the discrete metrics (1.3.15) and (1.3.16) satisfying the 
relations (1.3.14) are possible. For example, the projection terms can be defined in terms of 
the metrics themselves, giving an implicit definition of these metrics. Similarly, the stress 
projection term in the elastic stress formula (1.3.7) can be defined with the value C*+1 

instead of the metric G% and still results in all the properties summarized in Theorem 
1.3.1. • 



F. Armero 34 

Remark 1.3.4 We note that the volume-preserving property (1.3.17) is not only impor- 
tant for the isochoric plastic models as emphasized in (1.3.21), but also in models where the 
plastic volume change is an important physical aspect to capture correctly, like in dilatant 
models of soil mechanics. • 

1.3.3. The numerical implementation 

The numerical solution of the discrete plastic evolution equations (1.3.9) can be ap- 
proached through the common structure of return mapping algorithms consisting of an 
elastic trial state followed by a plastic corrector if necessary. Some calculations show that 
the solution for an elastic step A7 = 0 is given by F* = F£. The plastic corrector re- 
quires the solution of the system of equations (1.3.9) for {F^+1, an+i} while evaluating the 
stresses S* through (1.3.7) and the hardening variable q* through (1.3.6). 

This solution is efficiently accomplished through a two-level scheme with two nested 
Newton iterations. The "upper level" iteration drives the residual 

R4>(an+1) = (j)(S*(an+i), q*(an+1); Gl(an+1)) (1.3.22) 

to zero, solving for the updated equivalent strain an+i while enforcing the consistency 
condition (or the equivalent relation for the viscoplastic problem). The evaluation of the 
stresses and internal variables for a fixed value of a involves the evaluation of the plastic 
flow and plastic spin rules (1.3.9) 1,2- These equations are solved for the updated value 
Fn+i through the "lower level" Newton iteration driving the residual 

RFP(F%+1) 

— T -1 
?P    (r< r< \T?P (Cn+1 - Cn)F*    - (Ce

n+1 - CD - 2A7iV^ 

Gf1 (F£+1 - F%) Ff1 - A7 MWP AXIAL 

(1.3.23) 

to zero with A7 = (an+i — an)/n^ for the fixed value an+i at this lower level. Here we 
used the notion of the axial vector of a tensor through its skew part (denoted by AXIAL [•]), 
so the residual in (1.3.23) has nine components for the nine components of F^+1 after 
noting the symmetry of the first component of the residual in this equation. We refer 
to ARMERO & ZAMBRANA [2007] for complete details of the numerical implementation, 
including the consistent tangents in the solution of the problems (1.3.22) and (1.3.23), as 
well as the global algorithmic consistent tangent used in the construction of the stiffness 
matrix in typical Newton-Raphson solutions of the global equations (I.3.1)-(I.3.2). 
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FIGURE 1.3.1 Tumbling L-shaped block. Initial configuration and loading with finite element 
mesh (117 constant volume mixed trilinear bricks). 

1.4. Representative Numerical Simulations 

To illustrate the numerical properties of the newly developed volume-preserving energy- 
dissipative momentum-conserving scheme (referred simply in what follows as the EDMC- 
VP scheme) we consider the problem of a tumbling L-shaped block, first considered in 
SlMO & TARNOW [1992] in the elastic range and in MENG& LAURSEN [2002],NOELS ET 

AL [2004] in the context of elastoplasticity. Figure 1.3.1 depicts the initial configuration of 
the block, with its geometry and loading. This consists of point loads at the nodes of the 
block bases given by 

P(t) 

Po X t for 0 < t < 25, 

Po x (50 - - t)    for 25 < t < 50 

0 for t > 50, 

(1.4.1) 

for the vector p0 = [4 10 12]T and the opposite vector in the opposite base of the block, in 
the Cartesian system defined by the three orthogonal directions along the block edges. The 
block is then in free-flight after an initial period of loading. Figure 1.3.1 depicts also the 
assumed finite element discretization, consisting of 117 brick elements. The mixed finite 
element strategy indicated in Remark 1.3.2 has been considered with a piece-wise constant 
interpolation for the volume in combination with a trilinear displacement interpolation. 

We consider J2-flow theory for the material response, characterized by the von Mises 
yield function (1.2.28) and the associated flow vectors (1.2.14). Linear isotropic hardening is 
assumed, that is, y(a) = ay — q = ay + Ha for the initial yield limit ay and linear hardening 
modulus H. We consider Hencky's law for the hyperelastic response, characterized by the 
elastic potential 

1 
3 

We{Ce) = -K{\ogJeY+^y    (e 
A=l 

•e)2 
A) (1.4.2) 
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FIGURE 1.3.2 Tumbling L-shaped block. Deformed configurations with the distribution of 
the equivalent plastic strain a during the early stages of the motion computed with the new 
EDMC-VP scheme. 
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FIGURE 1.3.3 Tumbling L-shaped block. Temporal evolution of the three components of the 
angular momentum (left) and the kinetic, potential and total energies (right) for the solution 
computed 'with the new EDMC-VP scheme. 

for the bulk and shear moduli K and fi, respectively, and the regularized logarithmic prin- 
cipal strains 

e\ := log 
-1/3 r    A A ,4 = 1,2,3, (1.4.3) 

where XA are the elastic principal stretches defined by the eigenvalues of Ce (i.e. C
C
NA = 

(XA) NA, no sum in A). Table 1.4.1 includes the values of the different material parameters 
assumed in the simulations presented here. 

We consider several runs at constant time steps At. Figure 1.3.2 includes several 
snapshots of the solution computed with the new ENDC-VP scheme with At = 0.5 in the 
early stages of the motion. The distribution of the equivalent plastic strain a is depicted 
over the deformed configuration, thus showing the extend of the plasticity. The large 
displacements and strains involved in the solution are to be noted. 

Figure 1.3.3 shows the evolution of the three components of the angular momentum 
j and the energy, including the kinetic and potential energies, for the solution depicted in 
Figure 1.3.2, that is, the solution computed with the new EDMC-VP scheme and a constant 
time step of At = 0.5. The potential energy consists of the elastic strain energy plus 
the hardening potential integrated over the solid. The exact conservation of the angular 
momentum after the initial loading period is confirmed, as it is the conservation of the 
linear momentum (not shown). Similarly, the monotonic non-negative energy dissipation 
after this loading period is confirmed by these plots. The plastic volume (not shown) is 
also confirmed to be exactly preserved at all quadrature points: Jp = 1 everywhere and 
all times for the assumed isochoric model of J2-flow theory. 
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EDMC-VP Trapezoidal rule 

x10 x10 

1.25 

FIGURE 1.4.1 Tumbling L-shaped block. Evolution of the total energy in time for the solu- 
tions computed with the new EDMC-VP scheme (left) and the classical trapezoidal rule (right) 
for different time steps. The instabilities of the trapezoidal rule is to be contrasted with the 
strictly non-negative energy dissipation of the new EDMC-VP scheme. 

TABLE 1.4.1 Tumbling of a L-shaped block. Material parameters 

Bulk modulus K 2500 
Shear modulus /I 500 
Initial uniaxial yield limit Gy 100.0 
Linear hardening modulus H 200 
Reference density Po 100 

Table 1.4.2 shows the norm of the residual during a typical time step of the global 
Newton-Raphson scheme employed in the solution of the global nonlinear equations. An 
asymptotic quadratic rate of convergence is observed, confirming the use of the algorithmic 
consistent tangent (see ARMERO & ZAMBRANA [2007]). Table 1.4.3 includes the residual 
during the nested Newton iterations of the return mapping in a typical quadrature point 
undergoing plastic deformation. The "upper level" iteration enforces the consistency con- 
dition, requiring the evaluation of the stresses with the corresponding update F%+1 for a 
given equivalent plastic strain a. This is done in the "lower level" enforcing the plastic 
flow and spin rules. A quadratic rate of convergence can be observed, with a maximum 
of four iterations per level, as all the steps are linearized consistently, easing on the added 
computational cost involved with the new EDMC-VP scheme. In this respect, we note that 
a substantial part of this added cost can be traced to the non-symmetry of the algorithmic 
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TABLE  1.4.2 Tumbling of a L-shaped  block.    Convergence of the 
Newton-Raphson scheme in a typical time step 

1 2.1521743 10+03 

2 1.6642863 10+02 

3 1.0519854 10+00 

4 1.9821388 1Q-04 

5 5.5203698 10-O8 

6 3.3582068 lo-n 

TABLE 1.4.3 Tumbling of a L-shaped block. Convergence of the two 
nested Newton schemes to solve the local return mapping equations in a 
typical quadrature point for a plastic step. The "upper level" iteration 
imposes consistency, calling the "lower level" to evaluate the stresses 
and internal variables by enforcing the flow and plastic spin rules. 

1 0.33562 10+°i 
1 0.12540 10-ui 

2 0.72429 1Q-04 

3 0.29601 10-O8 

4 0.14922 10-12 

2 0.35841 10+oo 

1 0.14982 1Q-02 

2 0.10431 1Q-05 

3 0.40102 lo-n 

3 0.86176 10-04 

1 0.36027 1Q-06 

2 0.81996 10-13 

4 0.66080 lo-n 
1 0.27060 lO-l3 

consistent tangent characteristic of energy-momentum schemes, even in elastic problems. 
An efficient strategy to avoid this unsymmetry, relying on staggered symmetric iterations, 
can be found in ARMERO & ROMERO [2001b]]. 

We present in Figure 1.4.1 a zoom of the evolution of the total energy computed with 
different time steps (At = 0.5, 0.75 and 1.00). In all cases, we observe the monotonic 
dissipation of the new EDMC-VP scheme, confirming the exact energy conservation dur- 
ing elastic steps. These solutions are to be compared with the solution computed with 
the classical trapezoidal rule (Newmark jNW = 1/2 j3NW = 1/4) in combination with an 
exponential return mapping for the integration of the plastic evolution equations as also 
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shown in Figure 1.4.1; see SlMO [1992],SlMO [1998] for a complete description of the im- 
plementation of this classical algorithm. The instabilities of this scheme in the nonlinear 
range under consideration are clear: a blow up of the energy is observed at a finite time, 
forcing the stoppage of the of the simulation. The superior, more stable, performance of 
the new EDMC-VP scheme is concluded. 

1.5. Concluding Remarks 

We have presented in this paper a new energy-dissipative momentum-conserving time- 
stepping algorithm for finite strain multiplicative plasticity that also preserves the volume 
change of the plastic flow. In particular, it reproduces exactly the isochoric plastic response 
of isochoric plastic models for metals. The new scheme relies on a new integration scheme 
of the plastic evolution equations (flow and plastic spin rules and hardening law), whose 
implementation can also be recast in the classical structure of return mapping algorithms 
consisting of an elastic trial step followed by a plastic corrector. The scheme is constructed 
by following the discrete analogs of the arguments that build the energy-momentum dis- 
sipation/conservation properties in the underlying continuum problem. Similarly, the 
volume-preserving character is constructed by the proper approximation of the geometric 
structure behind the multiplicative plasticity models of interest in this work. The new 
scheme thus developed exhibits the aforementioned dissipation/conservation properties by 
design, rigorously and independently of the time step and model. In fact, the scheme is 
completely general, applying to isotropic or anisotropic elastic and/or plastic models of the 
associated or non-associated type. The improved stability properties of the new scheme 
have been illustrated for a representative numerical simulation, where standard schemes 
like the trapezoidal rule exhibit numerical instabilities in the form of an unbounded growth 
of the energy even in the dissipative plastic range considered here. 
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II. 1. Introduction 

Classical time-stepping algorithms, like the Newmark or HHT schemes, developed 
originally in the context of linear elastodynamics, are known to lead to severe numerical 
instabilities in the nonlinear finite deformation range, even for schemes that are uncondi- 
tionally stable in the linear range; see e.g. SIMO & TARNOW [1992], ARMERO & ROMERO 

[2001a], among others, or the results presented here. These instabilities are characterized 
by an unbounded growth of the energy, and have been observed even in the context of 
elastoplastic models (MENG & LAURSEN [2002], ARMERO [2006]). This situation, and the 
lack of the conservation law of angular momentum in many of these classical schemes, has 
motivated a large amount of recent literature on the formulation of the so-called energy- 
momentum schemes. These schemes inherit the conservation laws of energy and momenta 
of the underlying physical system by design. 

We refer to SIMO & TARNOW [1992], CRISFIELD & SHI [1994], GONZALEZ [2000] for 
an illustration of energy-momentum methods in nonlinear elastic problems, and to MENG 
& LAURSEN [2002], NOELS ET AL [2004], ARMERO [2006], ARMERO & ZAMBRANA [2007] 
for formulations considering the elastoplastic range where the goal is to capture the exact 
plastic dissipation (with exact conservation for elastic steps) while still preserving the 
momentum conservation laws. Extensions of these methods to incorporate an additional 
controllable numerical energy dissipation in the high-frequency range in order to handle the 
characteristic numerical stiffness of typical mechanical and structural system of interest 
have been proposed in ARMERO & ROMERO [2001a], ARMERO & ROMERO [2001b] for 
nonlinear continuum elastodynamics and in ARMERO & ROMERO [2003], ROMERO & 
ARMERO [2002] in the context of rod and shell Cosserat models of nonlinear structural 
dynamics. We refer to these time-stepping algorithms as EDMC schemes (for Energy- 
Dissipative Momentum-Conserving). They include, as a particular case, some of the 
aforementioned energy-momentum schemes. 

All these references consider the finite element method for the spatial discretization. 
The consideration of a nearly incompressible material response, like the one observed 
in plastically deforming metals and captured by classical elastoplastic models of J2-flow 
theory, requires the consideration of finite element formulations more sophisticated than 
the basic displacement model to avoid the characteristic volumetric locking of this basic 
formulation. To this end, the so-called assumed strain approach, as developed originally 
by NAGTEGAAL ET AL [1974], HUGHES [1980] in the infinitesimal range and SIMO ET AL 

[1988],ARMERO [2000] in the finite deformation range (both for static problems), becomes 
very convenient as it only requires the proper definition of the numerical approximation of 
the strains and their variations regardless of the material model under consideration. In 
the continuum nearly incompressible context of interest here, these formulations are also 
known as "B-bar" methods. 

B-bar methods that lead to locking-free finite elements in general configurations are 
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well-known by now, including general linear and quadratic quadrilateral and triangular 
elements for two dimensional problems, and similarly in 3D. Unfortunately, their direct 
consideration in the dynamic range of interest here destroys completely the conserva- 
tion/dissipation properties outlined above when used in combination of the aforementioned 
energy-momentum or EDMC schemes. These time-stepping algorithms rely on specific in- 
cremental properties of the linearized strain operator appearing in the equation of motion 
for a typical time step, properties that a straightforward evaluation of the B-bar operator, 
say at the mid-point, does not have. This situation can be traced back to the nonlinear 
definition of the assumed deformation gradient defining the assumed strain. For the in- 
compressible limit of interest here, the assumed deformation gradient involves a nonlinear 
scaling with its determinant or Jacobian (another nonlinear operation) and the assumed 
Jacobian defined through a weighted average over the element. 

All these considerations lead to the need of a new B-bar operator if the fundamental 
conservation laws of energy and momentum are to be preserved. The new operator needs 
to account not only for the discrete finite element interpolations in space, but also the 
discrete structure in time of the EDMC time-stepping algorithms, as presented in this 
paper. 

II.2. The governing equations and their conservation laws 

We consider a solid B C Rndim (ridim = 1, 2 or 3) and its motions (f(X, t) in time t for 
the material particles XeB, which satisfy the weak equation 

f p0<p-5pdV + f S: (FTGRAD [5<p])s dV = f Pob- Sp dV + [ T • 5<p dA , (II.2.1) 
JB JB S v ' JB JB 

= :±6C(<p,6<p) 

for all admissible variations Scp, that is, Scp = 0 on the part of boundary d^B with imposed 
deformation tp = Tp, complementary to the part of the boundary dfB in (II.2.1) where 
the tractions T are imposed. We have introduced in (II.2.1) the reference density of the 
solid p0, the acceleration cp = d2ip/dt2 , the specific body force b and the second Piola- 
Kirchhoff stress tensor S, a symmetric tensor in the reference configuration B of the solid. 
We observe the appearance of the conjugate variations SC/2 of the right Cauchy-Green 
tensor C = FTF for the deformation gradient F = GRAD [<p]. 

The particular form of the governing equation (II.2.1) leads to a number of physical 
conservation laws, very characteristic of the motions of solids and structures. In particular, 
denoting the velocity field by V = <p, we easily obtain for the case of a free solid for brevity 
(i.e. for b = 0, T = 0 and d^B = 0) the conservation laws 

I :=   / p0V dV = constant        and        j :=  / <p x p0V dV = constant,        (II.2.2) 
JB JB 



F. Armero 46 

corresponding to the linear and angular momentum, respectively, after using the crucial 
properties 

6C((p, c) = 0        and        8C((p, c x <p) = 0 , (II.2.3) 

for all constant vector fields c £ Mndim. The relations (II.2.3) correspond to the infinitesimal 
generators of the action of the Euclidean group Mndim x SO(ndim) associated with the 
symmetry of the governing equations (II.2.1) under translations and rotations, respectively; 
see e.g. MARSDEN [1992]. This leads to the existence of special (dynamic) equilibrium 
solutions given by the group motion 

cpet(X,t) = EXP   tSPlN[ne]    ife(X)+[    I    EXP 7] SPIN [fie]    drj) Ve (II.2.4) 

in terms of two fixed vectors fle and Ve, the angular and translational velocities , re- 
spectively, and the relative equilibrium configuration ipe(X) satisfying the equilibrium 
equation 

f p0Oe x [Oe xipe + Ve] -6<p dV+ f S((pe) : FjGRAD [Sip] dV = 0 ,        (II.2.5) 
JB JB 

again for all admissible variations 5<p; see SlMO ET AL [1991]. The existence of these 
relative equilibria relies again on the critical property of the strain variations 

5C(<pet,5<p) = 6c(pe, EXP   -t SPIN [fie]  Scp^j (II.2.6) 

along the group motion (pet(X, t) in (II.2.4). Here, SPIN [f2e] denotes the skew tensor with 
axial vector fie, and EXP [SPIN [fie]] the rotation defined by the exponential map between 
skew and rotation tensors. 

Finally, we note that we always have the relation 

d 
dt [/. ±Po\\v\\2 + w dV V dV for V = S:-C-W,        (II.2.7) 

:H 

for a general function W. Crucial again for obtaining the stress power in (II.2.7) is the 
relation 

6C(<p,<j>) = &, (U.2.8) 

for the strain variations. The interest here is the consideration of material models with 
W corresponding to the (internal) stored energy (H being the total energy with the ki- 
netic energy) and V the energy dissipation, a non-negative quantity by the second law of 
t her mo dynamics. 

In particular, we are interested in the case of finite strain plasticity characterized by 
the multiplicative decomposition F = FeFp of the deformation gradient in an elastic and 
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plastic part; see ARMERO [2006] and references therein.   The stresses are then given in 
T 

terms of an elastic potential We(Ce) for Ce = Fe Fe as 

T        dWe 

5 = FpSFp   = 2—- , (II.2.9) 
dCe y ' 

• — 1 
with the plastic part Fp defined by the plastic evolution equations (Lp = FPFP    ) 

-T 
Dp := sym [CeLp] = Fp    CFP     - Ce = 7 N^(S: q) , (II.2.10) 

Wp := skew [CeLp] = 7 MWp(S, q) , (II.2.11) 

a = 1n<j){S,q), (II.2.12) 

0(5, q)<0,     7 > 0 ,     70 = Oand70 = 0 , (II.2.13) 

for the yield surface 0(5, q) characterizing the elastic domain in stress space. We have 
considered isotropic hardening, modeled by the equivalent plastic strain a and the conju- 
gate stress-like variable q := —dH/da for a hardening potential H(a). In this setting, the 
internal energy W = We + H with the plastic dissipation given by T> = 5 : Dp + qa. The 
hyperelastic case is recovered for a fixed Fp, which is the case assumed for the relative 
equilibria (II.2.5) (i.e. vanishing of the plastic evolution or 7 = 0 in (II.2.10)-(II.2.13)). 

II.3. EDMC time-stepping algorithms 

The numerical solution of the governing equations (II.2.1) proceeds with the consid- 
eration of their spatial and temporal discretizations. The spatial discretization of interest 
here starts with the finite element discretizations of the deformation and velocity fields 

<f(X,tn+i)*<fh
n+i(X)=  J2 NA(X)  (XA + d*+i\, (II.3.1) 

and 

A=l  ^~ 
= :XA 

n-\-i 

^node 

V(X,tn+i) « Vn
h
+t(X) = J2 NA(X) vA

+i , (II.3.2) 
A=l 

with i = 0, or 1, and for the shape functions NA(X) associated to the nnode nodes with 
nodal (reference) coordinates XA, displacements dn+i and velocities vn+i in a typical time 
step [tn,tn+i] with At = tn+i — tn, not necessarily constant. 

Using standard procedures, together with a one-step mid-point interpolation in time 
(vn+i := (vn + vn+i)/2), we obtain the discrete algebraic system of equations 

-J-M (vn+1 -vn)+ [   B^S* dV = fext    , (II.3.3) 
lAt JBh 

dn+1 -dn = At vn+i , (II.3.4) 
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for a (symmetric) stress approximation S* to be defined.   Here, we have introduced the 
standard nodal external force fext and the mass matrix M defined as usual by the assembly 

AT^elem /ID 
Me    1 with 

e=l 

AB _ „   TKTA^TB    7T/ „„ 1MB MAa = /    PoN
ANa dV , or        M Ai* =  /    PoN

AdV8AB (no sum) ,       (II.3.5) 
JBh JBh 

e e 

for the consistent or lump forms of the mass. We have also considered an assumed linearized 
strain operator B* (or, simply, the B-bar operator) defined by the relations 

-SC^-SC^BJd, (II.3.6) 

for the nodal variations Sd. Note the approximate signs in this equation, indicating nu- 
merically consistent approximations (in fact, second order approximations of the mid-point 
values). In particular, the stresses are assumed to be given in terms of the assumed strains 

C = F F for an assumed deformation gradient F ~ GRAD[<^] as considered in the 
following section. 

The goal is the development of numerical approximations that preserve the conservation/dis- 
sipation laws of energy and momenta identified in the previous section for the problem at 
hand, the so-called EDMC schemes. The conservation laws of linear and angular momenta, 
defined in this discrete setting 

T^node f^node 

lhn+l =   J2   MAB vn+i        and        j*+i =   J2  MAB<^ X
 «»-H . (IL3-7) 

A,B=1 A,B=1 

(i.e. ln+i = In and 3n+i = 3n ^or fext = 0), follow easily from the considered mid-point 
approximation (II.3.4), as long as the B-bar operator satisfies the relations 

i?*c = 0        and        B* (c x xn+i) = 0 (II.3.8) 

for a constant vector c E M.ndiin (here, (•) denotes the global vector of nodal values given by 
(•)). We observe that the conditions (II.3.8) are the discrete counterparts of the relations 
(11.2.3) for the continuum problem. 

The group motion associated to the relative equilibria of the discrete equations (II.3.3)- 
(11.3.4) were obtained in ARMERO & ROMERO [2001a] and are given by 

Xen Aniph
e
A + un    and    vt = An [Oe x <phe

A + Ve]  , (II.3.9) 

for fixed vectors fie and Ve, and a sequence of rotations {An} and displacements {un} 
defined recursively by the relations 

Ln+1 = An CAY At SPIN [f2e] and        un+i = un + At An+i Ve ,        (II.3.10) 
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for An+i := (An + An+i) /2 (not a rotation in general) and the Cayley transform 

At 
CAY At SPIN [fie 

At 
1 H SPiN[17e -SPIN [fie e SO(ndi 

for the discrete relative equilibrium configuration cp^ given by the equation 
(II.3.11) 

M[nex (nex<p%+ve)) + /    BeS{iph
e)dV = Q 

jgh 

as long as the condition 

.B*e - BeAn+i , 

(II.3.12) 

(II.3.13) 

is satisfied along the group motion (II.3.9). We observe that equation (II.3.12) is the 
discrete counterpart of the equilibrium equation (II.2.5). Thus the algorithm preserves the 
relative equilibria of the system as long as the B-bar operator satisfies condition (II.3.13), 
the counterpart of relation (II.2.6). 

Finally, the counterpart of the energy conservation/dissipation equation (II.2.7) is 
obtained as 

Hn+i — HTl 

and 

AV dV       for       AV = S :-AC - AW ,        (II.3.14) 

H. 
1 

„+,- - -vn+i • Mvn+i + /    Wn+i dV        i = 0 or 1 (II.3.15) 

for the discrete system (II.3.3)-(II.3.4), as long as we have the relation 

B*(d Ti+l        u>n \*>. (II.3.16) 

for the B-bar operator B* and the increment of the assumed strain AC/2. 

Clearly, the interest here lies in the discrete dissipation (II.3.14) reproducing exactly 
the dissipation of the continuum system. For the elastoplastic model (II.2.10)-(II.2.13), 
this can be accomplished by considering the elastoplastic decomposition of the assumed 
deformation gradient F = FeFp (see Section II.4.1 below) and the discrete equations 

skew 

[FXli AC [FXli ~ ACe) = A7 N+(S., <?*) , (II.3.17) 

[C1n+i {K+i ~ F?) [FXli] = A7 Mw,&,q*) , (IL3.18) 

0, := 0(5*, q*) < 0 ,    A7 > 0 ,     A70* = 0 , (II.3.19) 
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as proposed in ARMERO [2006], with g*  = —AH/Aa and the stresses given by S* 
T 

f?P     1 

dW 

F^S^F^ with 

W(C*+1) - W(Cn) - 2^ ([Ce]n+A : ACe 

[Ce]"'i ACe : AC    [Ce]~+i +5 +^ 

Here we have introduced the notation [(•)]Tl+i = ((•)„, + (-)TH-I) /2. The formula (II.3.20) 

corresponds to a conserving approximation of the gradient formula (II.2.9) such that S : 
\ACe = AWe. It is a modification of the the original conserving formula proposed in 
GONZALEZ [2000] by including the elastic metric [Ce]   , i, as it will become crucial in the n-\- 2 

construction of the assumed B-bar operator in the following section. Again, the exact 
plastic dissipation (including exact energy conservation for an elastic step) is obtained 
by the return mapping algorithm (II.3.17)-(II.3.19) and the stress formula (II.3.20). This 
situation adds the desired numerical stability to the algorithms as illustrated with the 
numerical simulation presented in Section II.5. 

A variation of the return mapping algorithm (II.3.17)-(II.3.19) that also imposes ex- 
actly the isochoric plastic response in isochoric plastic models, like the classical J2-flow 
theory of metals, can be found in ARMERO & ZAMBRANA [2007]. Similarly, we refer to 
ARMERO & ROMERO [2001a], ARMERO & ROMERO [2001b] for variations of the stress for- 
mula (II.3.20) that incorporate a controllable high-frequency numerical energy dissipation 
to handle the usual high numerical stiffness in the systems of interest. 

II.4. Conserving assumed strain finite element methods 

II.4.1. The assumed deformation gradient and its variations 

The interest here is the development of assumed strain finite element methods for 
the locking-free approximation of nearly incompressible material models, like the plas- 
ticity models outlined above combined with a Mises-type deviatoric yield surface, while 
exhibiting the conservation/dissipation laws obtained in the previous section. This can 
be accomplished with the now standard scaled deformation gradient (see e.g.   ARMERO 

[2000], SlMO ET AL [1988]) 
i 

Fn+l = (^±l\ 3 QRAD [<phn+i] for        Jn+l := det [GRAD [<phn+l]}  ,      (II.4.1) 

(for i = 0, or 1) and the assumed Jacobian 0 = det[F] defined by the weighted average at 
the element level 

0 n-\-i (X):=rT(X)H-1   [   r(Y)Jn+l(Y)dV , (II.4.2) 
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for a set of n# element interpolation functions r (X) and the corresponding matrix 

H r(Y) rT(Y) dv e (II.4.3) 
Bh 

over a generic element B^. Typical choices are n$ = 1 and r = 1 in combination with a 
bilinear quadrilateral or trilinear brick element (Q1/A0), and n$ = 3 with r = [1 £ rj\T for 
the isoparametric coordinates (£, 77) in plane problems (and similarly for 3D) in combination 
with quadratic quadrilateral or triangular elements (Q2/A1 or P2/A1). 

— —T    — 
The consideration of the assumed right Cauchy-Green tensor Cn+i = Fn+iFn+i leads 

to the variations SCn+i/2 = Bn+iSdn+i for 

B n-\-i 
@n+i 

J, n-\-i 

1 
BA

+l + - C{<ph
n+l) <g> (gA

+i - gA
+i) (II.4.4) 

defining the classical B-bar operator Bn+i in terms of the standard (displacement) lin- 
earized strain operator 

B A      ._ 
n-\-i ' (^n+,)T2 NA

2 for    A = hn 

for plane problems (similarly for 3D), and the spatial gradients 

node 

nA j?-Tri/ 
and aA    - rT H 

(II.4.5) 

1   f   r gA
+i dV , (II.4.6) 

for the material gradients GA := GRAD[A^A] = [NA N£\ (A = l,nnode) as used in 
(II.4.5). Here we consider i = 0, 1/2 or 1, with i = 1/2 corresponding to the evaluation of 
the different quantities above in the mid-point configuration V^+i = (fn + fn+i)/^- 

The standard choice Bn+i in the governing equation (II.3.3) does not lead, however, 
to a conserving approximation. The conditions (II.3.8) can be easily seen to be satisfied, 
but the conditions (II.3.13) and (II.3.16) for the conservation of the relative equilibria and 
energy are not. This situation is to be traced to the spatial gradients fl^V 1 m (H.4.6). First, 

we observe that during the group motion (II.3.9) we have Fn = AnFe and Fn+i = An+iFe 

for the equilibrium deformation gradient Fe, but 

gA,i = A~l, F~TGA = A~lig
A /l,i9 

9t 

A 
e    ) (II.4.7) 
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as required for (II.3.13), since An+i = (An + An+i) /2 is not a rotation in general. Simi- 
larly, the condition (II.3.16) is not satisfied, in part because 

l^nod ''node /   T T    \ 

9n+i   [an+1 ~an) t      rj-. (II.4.8) 
A=l 

for [«/]n+i   = (Jn + ^n+i)/2, as it would be expected from its continuum counterpart 

(J = J Vi> : 1 for the spatial velocity gradient Vv). 

II.4.2. A new conserving B-bar operator 

Faced with the difficulties observed in the previous section, we introduce the new 
modified spatial gradients 

J n-\-\      •-* n 

riA 1     r-iA Fn+h [C]~U G     + 2 
W^t - I ^U • AC [Jin 1     r^A 

[C]-nU AC : AC [C]- 
— Fn+h[C]-UAC[C]-UG 

for A = l,nnode, and their assumed counterparts 

1 ^A 
9n+± ^H1 

\n+h 
r[JUhdt+hdv 

2   ""T2 

(II.4.9) 

(II.4.10) 

where we note the use of the average Jacobian [J]n+i = (Jn + «?n+i)/2. We observe that 
these modified spatial gradients do satisfy, by construction, the relations 

^"node 

E^+yK+i-<) 
A=l 

and 

T^node 

and      J2 9n+± • {dn+i ~ <*£) 
A\   _   ®n+l ~ ®r 

A=l 

9n+i = An+±9e     and gn+i = An+ig 
A 
e    i 

Jn+I 
(II.4.11) 

(II.4.12) 

along the group motion (II.3.9), all for A = l,nnode- We can observe the similarities with 
the stress formula (II.3.20) and, in particular, the use of the reference (convected) metric 
[C]n+i to arrive at the proper transformation properties for the modified spatial gradients. 

With these definitions at hand, we introduce the following new B-bar operator 

(II.4.13) 
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for A = l,nnode where 

((•)n + l)°-((-)n)C 

«  ([(0]„+i)
a for    (•).+! = (• 

D$:={        , n"
+ (II.4.14) 

'ra  ' 

for a generic quantity (•) and exponent a. By the way, we note that the formulas (II.3.20) 
and (II.4.9) are well-defined, with the quotients vanishing when C^+1 = C^ and Cn+i = 
Cn, respectively. No singularity occurs. 

The different terms in the expression (II.4.13) can be seen to be second-order approx- 
imation of the variations of the assumed C. Some long algebraic manipulations show that 
this new B-bar operator satisfies the desired conditions (II.3.8), (II.3.13) and (II.3.16). In 
particular, the relation (II.3.13) for the relative equilibria is satisfied for the assumed B-bar 
operator 

-^A (®eV BP = — \jj 
Bt + \cK®(gi-g$) for    A = l,nnode, (II.4.15) 

at the equilibrium configuration <p^. Hence, the new B-bar operator (II.4.13) leads to a 
fully energy-momentum assumed strain finite element formulation when combined with 
the EDMC time-stepping algorithms considered in Section II.3, obtaining in this way a 
(energy) stable formulation that avoids volumetric locking. 

II.5. Representative numerical simulations 

We present in this section several numerical simulations to illustrate and evaluate 
the performance of the assumed finite elements developed in this paper. In particular, 
we present in Section II.5.1 convergence tests showing the locking-free response of the 
proposed elements in the incompressible limit. Section II.5.2 evaluates the energy and 
momentum conservation properties in time for a plane elastic solid in free-flight, including 
the conservation of the relative equilibria. Finally, Section II.5.3 evaluates the energy 
dissipation and momentum conservation properties in time for an elastoplastic solid in the 
general three-dimensional case. 

II.5.1. Cook's membrane problem: evaluation of the locking-free properties 

We consider in this section the classical benchmark problem of the so-called Cook's 
membrane for the evaluation of the locking properties of finite elements in the incompress- 
ible limit. Figure II.5.1 depicts a sketch of the problem, consisting of a tapered slab fixed 
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FIGURE II.5.1 Cook's membrane problem. Problem definition: geometry, boundary condi- 
tions and loading. Distances in mm. Plane strain conditions are assumed for a unit thickness 
in the perpendicular direction. 

TABLE II.5.1 Cook's membrane. Material parameters. 

E Young modulus 
Poisson ratio v 
Reference density     p, 

210   GPa 
0.2-0.4999 

1.0-103   kg/m3 

at one end and with an imposed transversal load F(t) at the opposite end.  The load is 
applied proportionally in time 

F{t)=F±, (II.5.1) Ft 
tf 

accounting for the dynamic effects as it is the interest in this work. It is a dead load, 
uniformly distributed along the reference configuration of the slab's right edge. The solid 
is assumed to be at rest in the undeformed configuration at t = 0. Plane strain conditions 
are assumed. 

We consider the compressible Neo-Hookean hyperelastic model, defined by the poten- 
tial 

W(C) = ^  (In jf + ^ (trace [C] - 3) - /i In J 
Zi Zi 

(II.5.2) 

for the Lame constants 2/i = E/(l + v) and A = 2\ivj{\ — 2u) in terms of reference 
the Young modulus E and Poisson ratio v. Table II.5.1 includes the values of these 
parameters assumed in the simulations presented here, including also the reference density 
p0.  To evaluate the performance of the elements in the incompressible limit, the values 
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of the Poisson ratio v = 0.2 and 0.4999 are considered, the latter leading effectively to a 
quasi-incompressible response. 

We consider the three characteristic plane elements: the two quadrilateral elements 
Q1/A0 and Q2/A1 consisting of bi-linear and bi-quadratic displacement interpolations with 
piece-wise constant and linear interpolations for the volumetric strain interpolation, re- 
spectively. To illustrate the development of a triangular element, we consider the P2+/A1 
element with 7-node quadratic displacements and a piece-wise linear interpolation for the 
volume. The simulations presented here for the quadratic elements Q2/A1 and P2+/A1 do 
consider the presence of an internal node and its contribution to the displacement, velocity 
and acceleration interpolations (and hence, with mass contributions). Other implemen- 
tations where these contributions are treated in the context of enhanced strain elements 
as internal bubbles affecting only the strains can be easily devised. We consider a consis- 
tent mass matrix in all cases. The Q1/A0 and Q2/A1 quads consider a 2 x 2 and 3x3 
(full) Gauss quadrature, respectively, whereas the quadratic P2+/A1 element considers 
the standard 6 point quadrature on triangles; see e.g. HUGHES [1987]. 

The interest in this section is the evaluation of the locking properties of the spatial 
interpolations defined by the assumed strain elements developed here. To this end, we 
consider simulations for different levels of spatial mesh refinement, all with a fixed time 
step. We run the problem with 100 equal time steps to the final time tf = 10 ms and final 
load F = 100 kN, and measure the top corner vertical displacement. We consider regular 
structured spatial meshes with equal number of nodes per side. Figure II.5.2 depicts the 
solutions obtained with the three different elements and the mesh with 17 nodes per side 
for quasi-incompressible case v = 0.4999. We have included the distribution of the Mises 

(Cauchy) stress (i.e. ||dev[<7n+i]ll for the Cauchy stress crn+1 := Fn+iS*Fn+1/On+i 
where, recall, 0n+i = det [-Fn_|_i]) superposed to the deformed spatial configuration. A 
good agreement can be observed between the different solutions. We note the presence 
of large displacements and strains. The energy-momentum conserving formula (II.3.20) is 
considered for the evaluation of the stresses in the time-stepping scheme assumed for the 
temporal integration of the equation, thus leading to a fully conserving approximation in 
time. We evaluate these properties in the following sections. 

Figure II.5.3 depicts the computed top corner displacement versus the number of nodes 
per side for the two Poisson's ratios of v = 0.2 and v = 0.4999. A fairly good performance 
is observed for the former case by all the elements. This performance deteriorates drasti- 
cally in the quasi-incompressible case v = 0.4999 for the basic displacement finite elements 
Ql, Q2 and P2+. These elements simply consist of the evaluation of the linearized strain 
operator Bn+i in (II.4.5) at the mid-point configuration tn+i. This choice leads also to 
the sought energy-momentum conservation properties in time but clearly to volumetric 
locking in the incompressible limit. As expected the performance of the simple bilinear 
displacement Ql quad is particularly bad. The Q2/A1 and P2+/A1 also show a signifi- 
cant improvement over their displacement counterparts Q2 and P2+ elements, as a faster 
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FIGURE II.5.2 Cook's membrane problem. Distribution of the Mises stress (in GPa) super- 
imposed to the deformed configurations at the final time t = 10s for the quasi-incompressible 
case (v = 0.4999) and for three different assumed strain elements: the bilinear Q1/A0 and 
quadratic Q2/A1 quads and the quadratic assumed P2+/A1 triangle. All correspond to the 
meshes with 17 nodes per side and follow the same scale shown. 
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FIGURE II.5.3 Cook's membrane problem. Convergence plots for two different Poisson's 
ratios {y = 0.2 and v = 0.4999) and six different finite elements. The removal of the locking 
in the quasi-incompressible case v = 0.4999, to be contrasted with the corresponding basic 
displacement element, is to be noted. 
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stiff core elastic arms • 
If) 

FIGURE II.5.4 Two-dimensional elastic solid in free flight. Problem definition: geometry and 
initial conditions. Distances in m. Plane strain conditions are assumed for a unit thickness in 
the perpendicular direction. 

TABLE II.5.2 Two-dimensional elastic solid in free-flight.   Material 
parameters for the elastic arms. 

E Young modulus 
Poisson ratio v 
Reference density     p, 

40  GPa 
0.45 

8.6-103   kg/m3 

convergence is observed for limit values obtained with finer meshes. When comparing the 
plots presented in Figure IL5.3, we conclude that the proposed assumed treatment of the 
volumetric strain leads to the desired locking-free response in volume. 

II.5.2. Two-dimensional solid in free flight: evaluation of the conservation 
properties in time for the elastic case, including the relative equilibria 

We evaluate in this section the conservation properties in time of the newly developed 
B-bar formulation for nonlinear elastic problems. We still consider plane strain conditions, 
leaving the consideration of three-dimensional problems for the next section. The interest 
here is the confirmation of the conservation of the energy and the preservation of the mo- 
mentum conservation laws, and the associated relative equilibria, as shown in Proposition 
1.3.1. 

To this purpose, we consider the plane solid depicted in Figure II.5.4 consisting of a 
rigid cylindrical core and two elastic arms. This figure also shows the finite element mesh 
considered in all the numerical simulations presented here. It consists of 72 quadrilat- 
eral assumed strain Q1/A0 elements, defined by bilinear displacements and the piece-wise 
constant volumetric strain. The consistent mass matrix (II.3.5) is considered. 

The elastic arms follow the compressible Neo-Hookean response defined by the stored 
energy function (II.5.2). Table II.5.2 includes the values of the material parameters as- 
sumed in the simulations. In particular, we consider a Poisson ratio of v = 0.45 for the 
problem to be close to the incompressible limit, as evaluated in the previous section. The 
rigid core has been modeled by simply increasing the Young modulus to 100 times that of 
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the arms. 

The solid is given the initial velocity defined by the nodal values 

vA(0) = f2e3xxA(0)        A = 1, nnode , (II.5.3) 

for an initial angular velocity f2, the unit vector e% corresponding to the thickness direction 
(i.e. the direction perpendicular to the plane of the problem) and the initial nodal positions 
xA(Q) = XA of the reference mesh in Figure II.5.4 in a Cartesian reference system with 
origin at the center of the rigid core. The solid is left then to evolve freely in the plane 
{ei, e2J, with e.\ defined by the axis of the arms in their initial configuration. Figure II.5.5 
shows the motion computed with the newly proposed B-bar method (II.4.13) for an initial 
angular velocity of Q = 0.230 rad/ms and a constant time step of At = 0.5 ms. We 
observe that the rigid-body velocity distribution (II.5.3) is lost as the solid deforms from 
this initial velocity and undeformed configuration. We have included the distribution of 
the Mises Cauchy stress in the arms, defined as indicated in the previous section, over the 
deformed configuration of the solid. Large strains and displacements (rotations) around 
the center (by symmetry) can be observed. 

Given the assumed free-flight conditions, the linear momentum lh and the angular 
momentum jh should be conserved along the motion. In particular, jh = jh e% for a 
scalar jh in this plane setting and lh = 0 for the assumed initial conditions. Similarly, 
the total energy Hh in (II.3.14) should also be conserved for the assumed elastic response. 
These conservation properties are confirmed for the new B-bar method (II.4.13) as shown 
in Figure II.5.6, depicting the exact conservation of the angular momentum jh and energy 
Hh along the motion. The different components of the linear momentum, not shown, 
are also exactly conserved. The kinetic and potential energies, see equation (II.2.7), are 
also included in the energy plot with their sum, the total energy, showing again its exact 
conservation. These results confirm Proposition 1.3.1. 

To illustrate the need of the new B-bar operator for the exact conservation of the 
energy (that is, to satisfy the relation exactly) we consider the standard (non-conserving) 
B-bar operator (II.4.4) evaluated at the mid-point Bn+±. As discussed above, this choice 
does conserve the linear and angular momenta but not the energy. This situation is 
confirmed by the numerical simulations. Figure II.5.7 shows the evolution of the total 
energy for this case and compares it with the new conserving B-bar method (II.4.13), for 
two different time steps (At = 0.5 and 0.3 ms). The conserving stress formula (II.3.20) 
is maintained, so the only difference is the B-bar operator. The lack of the conservation 
of the energy for the standard B-bar operator (II.4.4) is apparent, even though again a 
conserving stress formula is used. 

It is interesting to note that the solutions in Figure II.5.7 begin to show high-frequency 
content in the long term, leading to a non-convergence of the simulation for the non- 
conserving B-bar operator at a higher energy content. It must be noted that these failures 
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FIGURE II.5.5 Two-dimensional elastic solid in free flight: solution for an angular velocity 
Q = 0.230 rad/ms (At = 0.5 ms). The distribution of the Mises stress (in GPa) in the arms is 
shown superimposed to the solid's deformed configuration at different times. 
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FIGURE II.5.6 Two-dimensional elastic solid in free flight: solution for an angular velocity 
Q = 0.230 rad/ms (At = 0.5 ms). Evolution in time of the angular momentum (left) and 
the energy, including the kinetic, potential and total energies (right), computed with the new 
conserving assumed strain finite element in combination with an energy-momentum conserving 
time-stepping scheme. The exact conservation of the total energy and the angular momentum 
is to be noted. 
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FIGURE II.5.7 Two-dimensional elastic solid in free flight. Solution for an angular velocity 
Q = 0.230 rad/ms. Evolution in time of the total energy computed with the new conserving 
B-bar operator (II.4.13) and the basic mid-point B-bar operator (II.4.4), for different time 
steps. 
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FIGURE II.5.8 Two-dimensional elastic solid in free flight: group motion associated with 
the relative equilibrium at an angular velocity Q = 0.230 rad/ms (At = 0.5 ms). The 
distribution of the Mises stress (in GPa) in the arms is shown superimposed to the solid's 
deformed configuration at different times. An exact rotation can be observed for all times. 
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FIGURE II.5.9 Two-dimensional elastic solid in free flight. Evolution in time of the radius 
for nodes A, B and C (see Figure II.5.4) for the solutions starting from the undeformed con- 
figuration (left) and the relative equilibrium (right), both for the same initial angular velocity 
Q = 0.230 rad/ms (At = 0.5 ms). 
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of convergence also affect fully energy conserving formulations (although they are observed 
to fail to converge at a later time), being a direct consequence of the high numerical stiffness 
of the problem. We refer to ARMERO & ROMERO [2001a], ARMERO & ROMERO [2001b] 
for a complete discussion of this issue as well as the formulation of EDMC time-stepping 
algorithms that exhibit the controllable high-frequency energy dissipation required to han- 
dle these situations. Briefly, this is accomplished with a modified stress formula (II.3.20), 
so the new stress approximation S* satisfies the energy relation 

S*:^AC = AW + Vnum , (II.5.4) 

for the numerical dissipation Vnum > 0, affecting the high-frequency response without 
perturbing the momentum conservation properties, being rigorously non-negative and fully 
controllable (i.e. T>num = 0 is an option, recovering the original fully energy conserving 
approximation as a particular case). The important fact for the discussion here is that 
the B-bar operator still needs to satisfy the relation (II.3.16) for the numerical dissipation 
Vnurn in (II.5.4) to appear in the global energy evolution equation, and hence for the 
scheme to be rigorously energy dissipative (conservative as a particular case). Therefore, 
the consideration of these EDMC schemes requires also the use of the new conserving B- 
bar operator developed in this paper with the basic operator (II.4.4) still prone to exhibit 
numerical instabilities. The original references ARMERO & ROMERO [2001a], ARMERO & 
ROMERO [2001b] considered only displacement based finite element formulations, which 
do satisfy these conditions as discussed above but lead to locking elements. 

To complete the confirmation of Proposition 1.3.1, we study the conservation of rela- 
tive equilibria for the problem at hand. To this purpose, we solve the relative equilibrium 
equation (II.3.12), obtaining the equilibrium deformation <p^(X) for a given angular ve- 
locity Qe. Since this deformation is defined up to a translation and a rotation, and given 
the symmetry in the motions considered here (with the center of mass remaining fixed at 
the origin), the boundary conditions imposed while solving this equation consist of fixing 
the node at this center and the transversal displacement of Node C (see Figure II.5.4) at 
the tip of an arm (transversal to the axis of the arm), hence fixing the free rigid rotation. 

We then compute the dynamic solution with the initial conditions defined by the 
computed equilibrium deformation (i.e. 0^(0) = (p^(XA)) and the velocity distribution 
(II.5.3) for the equilibrium angular velocity Qe based on this equilibrium configuration. 
If the relative equilibria are preserved, the group motion given by the solution (II.3.9), 
corresponding to a rigid rotation in the deformed configuration (p^(X) with a constant 
angular velocity Qe (note that ve = 0, i.e., no translation), must be recovered. 

The new B-bar operator does obtain this solution, hence confirming the analyses 
leading to Proposition 1.3.1. Figure II.5.8 depicts the solution obtained in this case with 
an angular velocity Qe = 0.230 rad/ms (At = 0.5 ms). The deformation at t = 0 ms shows 
the computed equilibrium configuration cp^(X) with the distribution of the Mises (Cauchy) 
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stress in the arms; see Section II.5.1. The same configuration, with the very same stress 
distribution, is obtained at later times but rotated. The purely rigid rotational character 
of this motion is also confirmed by the plots in Figure II.5.9, showing the evolution in 
time of the radial coordinate from the center of the rigid core of Nodes A, B and C along 
the arms; see Figure II.5.4. These radii remain constant at all times at the initial value 
corresponding the initial deformed configuration cp^(X). Note that these radii do not 
correspond to the values in the initial undeformed configuration, except for Node A since 
this node is on the rigid central core. 

To illustrate better this equilibrium solution, we have included in Figure II.5.9 the 
radii of the same nodes for the dynamic solution depicted in Figure II.5.5. In contrast with 
the equilibrium solution, this non-equilibrium solution starts from the undeformed configu- 
ration shown in Figure II.5.4. The same initial angular velocity of Qe = 0.230 rad/ms has 
been considered in both cases. The variation of these radii illustrate the non-equilibrium 
character of this solution in contrast with the solution depicted in Figure II.5.8. Note again 
that Node A is on the rigid central core. We also note that these two solutions, although 
defined by the same initial angular velocity, correspond to different angular momentum 
and energy, both conserved in the equilibrium and non-equilibrium solutions but different 
given the initial conditions for each. 

II.5.3. Three-dimensional solid in free flight: evaluation of the conservation/ 
dissipation properties in time for the elastoplastic case 

The purpose of this last numerical example is to evaluate the conservation properties 
in time of the formulation developed in this paper in the context of elastoplastic problems 
and in the three-dimensional case. As noted above, elastoplastic problems are of particular 
interest since the isochoric plastic flow in typical applications involving plastic models like 
J2-flow theory leads effectively to quasi-incompressible problems, thus requiring special 
locking-free finite element interpolations as developed in this paper. We also consider a 
three-dimensional problem in contrast with the plane problem of the previous section. In 
this way, we consider the assumed strain brick Q1/A0 consisting of a trilinear interpolation 
of the displacement with a piece-wise constant volume over the element. The standard 
2x2x2 Gauss quadrature is considered in the evaluation of all the element arrays. 

The solid under consideration consists of a stiff heavy inner ring with three equally 
spaced flexible arms in the configuration depicted in Figure II.5.10. Details of the geomet- 
ric dimensions are shown in this figure. The flexible arms follow a finite strain elastoplastic 
model of J2-flow theory based on a multiplicative decomposition of the deformation gradi- 
ent F = FeFp. Briefly, we consider the plastic evolution equations (II.2.10)-(II.2.13) for 
the von Mises yield function 

0=||dev[r]||- J^y(a)<0, (II.5.5) 
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stiff hea vy ring of inner radius 0.5, 
outer radius 0.7and depth 0.2 

-&> 

equally spaced elastoplastic 
\ arms of identical dimensions 

the inner ring is given an initial velocity 
corresponding to a rigid bofy distribution 
with angular velocity Q around the z axis 

FIGURE II.5.10 Three-dimensional solid in free flight.   Problem definition:   geometry and 
initial conditions. Distances in m. 

for the Kirchhoff stress r := FeSFe  , its (spatial) deviatoric part dev [r] and the corre- 
sponding Euclidean tensor norm (i.e. ||A||2 := A : A), with the plastic flow vectors 

Nd 
OS 

pe  deV M   peT 
iH 

S,C< 
and M WP 0 

q,c°       ildev[r]^    *     '"''    dQ 
(II.5.6) 

(that is, an associated plastic model with no plastic spin), after noting that we have 

| dev [r] CeDEVc-ei : DEVC-! 

for 

DEVc-i S--IS: Ce ) Ce Fedev [r] Fe 

(II.5.7) 

(II.5.8) 

thus confirming the assumed functional dependence for the yield function (II.5.5) and flow 
vectors (II.5.6). The linear isotropic hardening law 

y(a) = <7y + H a (II.5.9) 

and corresponding hardening potential H(a) = H a2/2 (so q = —dH/da = —Ha = 
oy —y(a)), for the initial uniaxial yield limit cry and linear hardening modulus H, has been 
assumed. 

The elastic part (II.2.9) is defined by the Hencky's hyperelastic potential 

A li. 
We(Ce) = -(lnJe)z + 9||lnCe||2 (II.5.10) 

for the elastic right Cauchy-Green tensor Ce = Fe Fe, the elastic Jacobian Je = det-Fe, 
and the Lame constants A and /i as in the previous section.   Table II.5.3 includes the 
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TABLE II.5.3 Three dimensional solid in free-flight. Material param- 
eters for the elastoplastic outer arms. 

Young modulus E 10   GPa 
Poisson ratio V 0.2 
Initial uniaxial yield limit Gy 975   GPa 
Linear hardening modulus H 200  MPa 
Reference density Po 2.0-103   kg/m3 

material parameters assumed for the arms. The inner ring is stiff and heavy, following the 

elastic Hencky's model (II.5.10) with a reference Young modulus 100 Earms and reference 

density 10 p0 of the corresponding values for the arms, and with the same Poisson ratio of 

i/ = 0.2. 

We refer to ARMERO [2006], ARMERO & ZAMBRANA [2007] and references therein for 

complete details on the elastoplastic model and the development of EDMC return mapping 

algorithms for their integration. In particular, we consider the EDMC return mapping algo- 

rithm developed in ARMERO [2006], and outlined above, in combination with the invariant 

stress formula (II.3.20) in terms of the elastic Cauchy-Green tensor Ce for the evaluation 

of the stresses (II.2.9) in its elastic part. The resulting global time-stepping algorithms 

show the exact plastic dissipation (including exact energy conservation in elastic steps) 

and the exact conservation laws of linear and angular momenta. The successful extension 

of these conservation/dissipation properties to the assumed strain elements needed for fi- 

nite element simulations of problems considering this type of plastic model requires the 

developments presented in the current paper. We also note that, even though we present 

results here for the particular model given by (II.5.5)-(II.5.10), the algorithms considered 

here are completely general, with formulas like (II.3.20) and (II.3.17)-(II.3.19), applying to 

general isotropic or anisotropic models, associated or even non-associated plastic models. 

As noted in above, it is precisely the flexibility in handling different material models that 

motivates the development of the assumed strain framework considered here. 

The simulations are started by considering the initial velocity given by the rigid-body 

distribution (II.5.3), in terms of the angular velocity Q around the axis of symmetry e% 

shown in Figure II.5.10, for the inner ring only. No loading or boundary conditions are 

imposed, thus leading to the free-flight of the solid in later times. In these conditions, 

the three components of both the linear and angular momenta are conserved as it is the 

total energy for elastic cases. A positive energy dissipation is to be observed if the plastic 

response of the arms is activated. 

To illustrate the fully conserving properties in the elastic case in the considered three- 

dimensional setting, we first consider an initial angular velocity of Q = 0.100 rad/ms , 

which leads to a fully elastic response. The computed solution for a constant time step of 
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FIGURE II.5.11 Three-dimensional solid in free flight: solution for an angular velocity 
Q = 0.100 rad/ms leading to a purely elastic response of the solid. The distribution of the 
Mises (Cauchy) stress (in GPa) in the arms is shown superimposed to the solid's deformed 
configuration at different times. 
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FIGURE II.5.12 Three-dimensional solid in free flight: solution for an angular velocity 
Q = 0.100 rad/ms leading to a purely elastic response of the solid. Evolution in time of 
the angular momentum components (left) and total energy (right) computed with the new 
conserving assumed strain finite element in combination with an energy-momentum conserving 
time-stepping scheme. The exact conservation of the total energy and the three components of 
the angular momentum is to be noted. 

At = 1.0 ms is depicted in Figure II.5.11. The distribution of the Mises stress in the arms 
is again shown over the deformed configuration of the whole solid for different times. No 
activation of the plastic response is observed for these initial conditions, thus expecting 
a full conservation of the total energy. This conservation property is confirmed by the 
evolution plots shown in Figure II.5.12. The potential and kinetic energies are shown as 
they vary in time with their sum (the total energy) being exactly constant during the 
simulation. Figure II.5.12 shows also the evolution of the three components of the angular 
momentum jh, confirming again its exact conservation at all times. Note that, for the 
considered initial condition, the only non-zero component is the component j\• The same 
situation applies to the linear momentum, not shown, with the three components vanishing 
given the assumed initial conditions (lh = 0). 

The increase of the initial angular velocity to Q = 0.200 rad/ms leads to the solution 
depicted in Figure II.5.13. This initial velocity results in the development of plastic strains 
in the arms. Figure II.5.13 shows the distribution of the equivalent plastic strain a at 
different early stages of the motion. The large deformation and strains are to be noted. 
A constant time step of At = 1.0 ms has also been considered. Figure II.5.14 depicts the 
evolution of the total energy and the axial (non-zero) component of the angular momen- 
tum for this case. The exact conservation of the momentum is again obtained, with the 
total energy showing a strictly positive energy dissipation during plastic steps and exact 
conservation during elastic ones. 

These results confirm the exact conservation properties of the assumed strain inter- 
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FIGURE II.5.13 Three-dimensional solid in free flight: early stages of the solution for an 
angular velocity Q = 0.200 rad/ms leading to an elastoplastic response of the solid. The 
distribution of the equivalent plastic strain is shown superimposed to the solid's deformed 
configuration at different times. 
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FIGURE II.5.14 Three-dimensional solid in free flight: solution for an angular velocity J? = 
0.200 rad/ms leading to an elastoplastic response of the solid. Evolution in time of the 
angular momentum jt (left) and total energy (right) for the new conserving assumed strain 
finite element in combination 'with an EDMC time-stepping scheme and the standard (non- 
conserving) assumed strain element 'with the classical trapezoidal rule. The latter exhibits an 
instability leading to the termination of the computation with a non-physical growth of the 
energy. 

polations developed in this work in combination of EDMC time-stepping algorithms for 
the integration of the equations in time. This situation is to be contrasted with standard 
schemes currently available in the literature. As an illustration we have included in Figure 
II.5.14 the solution obtained with the classical trapezoidal rule (i.e. Newmark j3 = 1/4, 
7 = 1/2); see e.g. SlMO [1998] for an implementation in the finite strain plastic case of 
interest. In particular the simulation considers the exponential return mappings that can 
be found developed in this last reference. The spatial discretization considers the classical 
(non-conserving) B-bar approximation of Section (sub:NCBbar) evaluated at the end of the 
time step tn+i, as required by this scheme. The lack of conservation/dissipation properties 
for both the angular momentum and energy become apparent in the solutions depicted in 
Figure II.5.14. In particular, we observe the nonlinear unstable character of the scheme as 
the unbounded growth of energy forces to stop the simulation at some time. The presence 
of this unphysical energy growth, even in the context of a dissipative elastoplastic as con- 
sidered here, is to be noted and contrasted with the exact energy conservation/dissipation 
properties of the methods developed in this work. 

II.6. Concluding remarks 

We have presented in this appendix a new framework for the development of assumed 
strain finite elements for nearly incompressible problems in the finite deformation dynamic 
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range that preserves the conservation/dissipation properties in time of energy and mo- 
menta characteristic of recently developed energy-momentum and EDMC time-stepping 
algorithms. The proposed formulation relies on the proper definition of the linearized strain 
operator (or B-bar operator) accounting not only for the spatial interpolations but also 
for the temporal approximation of the governing equations. Standard existing treatments, 
with the B-bar operator defined through the standard variation of the assumed strains, 
have been shown to destroy the energy conservation, thus leading to difficulties in the form 
of instabilities with an energy growth. After identifying the general conditions that this 
operator must satisfy to lead to conserving approximations of the energy, the linear and 
angular momenta and the associated relative equilibria, we have undertaken the formula- 
tion of actual finite elements for plane and three-dimensional problems. The conservation 
properties in time have been proven rigorously, and evaluated numerically with several 
representative simulations in nonlinear elastodynamics and dynamic finite strain plastic- 
ity, illustrating also the locking-free character of the final elements in the incompressible 
limit of interest. 

A main advantage of the considered assumed strain framework is its flexibility in terms 
of the involved constitutive models. Indeed, the kinematic considerations defining the new 
B-bar operator are completely independent of the considered material model, this being 
elastic or inelastic, isotropic or anisotropic, with coupled or uncoupled volumetric and 
deviatoric parts. This situation is to be contrasted with the more involved implementation 
of mixed formulations for general models; see e.g. SlMO ET AL [1988]. We have only 
addressed in this paper the case of volumetric locking, without considering shear locking. 
The latter is not as a severe problem for the type of problems considered in this paper, 
namely, continuum problems; see e.g. ARMERO [2000], ARMERO [2004]. However, the 
assumed strain methods developed here for the volume response can be combined with 
enhanced strain formulations to address shear locking, as developed in ARMERO [2000] for 
static problems. We are currently exploring these extensions for the dynamic problems of 
interest here. 
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